We report on the optical and electrical transport properties of single-crystalline silicon carbide nanowires (SiC NWs). The NWs were fabricated by a chemical vapor deposition process, and had diameters of <100nm and lengths of several μm. X-ray diffraction and transmission electron microscopy analysis showed the single-crystalline nature of NWs with a growth direction of ⟨111⟩. Photoluminescence characterization showed blue emission at room temperature. The electrical measurements from a field effect transistor structure on individual NWs showed n-type semiconductor characteristics. The resistivity and estimated electron mobility on the NWs are 2.2×10−2Ωcm for 0V of gate voltage and 15cm2∕(Vs), respectively. Our low-resistivity SiC NWs could be applied to a high-temperature operation sensor and actuator due to its own excellent electrical and optical properties.
The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, leave, stems, and berries. To extract the ginsenosides, 70% (v/v) methanol was used. The optimal ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) method was used to profile various ginsenosides from the different parts of P. ginseng. The datasets were then subjected to multivariate analysis including principal component analysis (PCA) and hierarchical clustering analysis (HCA). A UPLC-QTOF/MS method with an in-house library was constructed to profile 58 ginsenosides. With this method, a total of 39 ginsenosides were successfully identified and quantified in the ginseng roots, leave, stem, and berries. PCA and HCA characterized the different ginsenosides compositions from the different parts. The quantitative ginsenoside contents were also characterized from each plant part. The results of this study indicate that the UPLC-QTOF/MS method can be an effective tool to characterize various ginsenosides from the different parts of P. ginseng.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.