Copy number mutations implicate excess production of α-synuclein as a possibly causative factor in Parkinson’s disease (PD). Using an unbiased screen targeting endogenous gene expression, we discovered that the β2-adrenoreceptor (β2AR) is a regulator of the α-synuclein gene (SNCA). β2AR ligands modulate SNCA transcription through histone 3 lysine 27 acetylation of its promoter and enhancers. Over 11 years of follow-up in 4 million Norwegians, the β2AR agonist salbutamol, a brain-penetrant asthma medication, was associated with reduced risk of developing PD (rate ratio, 0.66; 95% confidence interval, 0.58 to 0.76). Conversely, a β2AR antagonist correlated with increased risk. β2AR activation protected model mice and patient-derived cells. Thus, β2AR is linked to transcription of α-synuclein and risk of PD in a ligand-specific fashion and constitutes a potential target for therapies.
Excitotoxicity and oxidative stress mediate neuronal death after hypoxic-ischemic brain injury. We examined the possibility that targeting both N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity and oxidative stress would result in enhanced neuroprotection against hypoxicischemia. 2-Hydroxy-5-(2,3,5,6-tetrafluoro-4-trifluoromethyl-benzylamino)-benzoic acid (Neu2000) was derived from aspirin and sulfasalazine to prevent both NMDA neurotoxicity and oxidative stress. In cortical cell cultures, Neu2000 was shown to be an uncompetitive NMDA receptor antagonist and completely blocked free radical toxicity at doses as low as 0.3 lmol/L. Neu2000 showed marked neuroprotection in a masked fashion using histology and behavioral testing in two rodent models of focal cerebral ischemia without causing neurotoxic side effects. Neu2000 protected against the effects of middle cerebral artery occlusion, even when delivered 8 h after reperfusion. Single bolus administration of the drug prevented gray and white matter degeneration and spared neurologic function for over 28 days after MACO. Neu2000 may be a novel therapy for combating both NMDA receptor-mediated excitotoxicity and oxidative stress, the two major routes of neuronal death in ischemia, offering profound neuroprotection and an extended therapeutic window.
The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson’s-linked neurodegeneration.
J. Neurochem. (2012) 122, 952–961. Abstract While free radicals and inflammation constitute major routes of neuronal injury occurring in amyotrophic lateral sclerosis (ALS), neither antioxidants nor non‐steroidal anti‐inflammatory drugs have shown significant efficacy in human clinical trials. We examined the possibility that concurrent blockade of free radicals and prostaglandin E2 (PGE2)‐mediated inflammation might constitute a safe and effective therapeutic approach to ALS. We have developed 2‐hydroxy‐5‐[2‐(4‐trifluoromethylphenyl)‐ethylaminobenzoic acid] (AAD‐2004) as a derivative of aspirin. AAD‐2004 completely removed free radicals at 50 nM as a potent spin‐trapping molecule and inhibited microsomal PGE2 synthase‐1 (mPGES‐1) activity in response to both lipopolysaccharide‐treated BV2 cell with IC50 of 230 nM and recombinant human mPGES‐1 protein with IC50 of 249 nM in vitro. In superoxide dismutase 1G93A transgenic mouse model of ALS, AAD‐2004 blocked free radical production, PGE2 formation, and microglial activation in the spinal cords. As a consequence, AAD‐2004 reduced autophagosome formation, axonopathy, and motor neuron degeneration, improving motor function and increasing life span. In these assays, AAD‐2004 was superior to riluzole or ibuprofen. Gastric bleeding was not induced by AAD‐2004 even at a dose 400‐fold higher than that required to obtain maximal therapeutic efficacy in superoxide dismutase 1G93A. Targeting both mPGES‐1‐mediated PGE2 and free radicals may be a promising approach to reduce neurodegeneration in ALS and possibly other neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.