In the present study, the vertical load-carrying behavior of micropile foundations with various configuration conditions was investigated based on results from model load tests. Considered configuration conditions included micropile inclination angle, spacing of micropiles, and types of micropile foundations. The ultimate load capacity of micropiles varied with installation angle, showing an initial increase and peak followed by a gradual decrease with further increase in installation angle. The ultimate load capacity of micropiled rafts was affected by both installation angle and micropile spacing. The load-carrying mechanism of micropiles for the inclined condition was proposed based on the decomposed axial and lateral load and resistance components. Using the proposed load-carrying mechanism and test results obtained in this study, the load capacity ratio for an inclined micropile was proposed. The group effect and interaction effect factors for group micropiles and micropiled rafts were proposed, respectively, all of which can be used to estimate the load-carrying capacity of micropile foundations. Field load tests were conducted and it was seen that estimated results using the proposed method were in good agreement with measured results. Additional comparison with case examples from the literature also confirmed the validity of the proposed method.
Abstract:The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL), as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.