We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles in the middle of a microchannel, and spiral channel geometry was also considered in order to take advantage of the counteracting force, Dean drag force that induces particle migration in the outward direction. For theoretical understanding, we performed a numerical analysis of viscoelastic fluids in the spiral microfluidic channel. From these results, a concept of the ‘Dean-coupled Elasto-inertial Focusing band (DEF)' was proposed. This study provides in-depth physical insight into the multiplex focusing of particles that can open a new venue for microfluidic particle dynamics for a concrete high throughput platform at microscale.
Superhydrophobicity of multiscale hierarchical structures and bouncing phenomenon of a water droplet on the superhydrophobic surface were studied. The multiscale hierarchical structures of carbon nanotube/ZnO and ZnO/carbon nanofiber were produced by the hydrothermal method. The multiscale hierarchical structure showed superhydrophobicity with a static contact angle (CA) larger than 160° due to increased air pockets in the Cassie-Baxter state. The water bouncing effect observed on the multiscale hierarchical nanostructure was explained by the free energy barrier (FEB) analysis and finite element simulation. The multiscale hierarchical nanostructure showed low FEBs which provoke high CA and bouncing phenomenon due to small energy dissipation toward receding and advancing directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.