This experiment was conducted to determine the optimum level of green tea by-product (GTB) in diets without antibiotics and to evaluate its effect on broiler performances. A total of 140 Ross broilers were kept in battery cages for a period of 6 weeks. Dietary treatments used in this experiment were antibiotic free group (basal diet as a control), antibiotic added group (basal+0.05% chlortetracycline), GTB 0.5% (basal+GTB 0.5%), GTB 1% (basal+GTB 1%) and GTB 2% (basal+GTB 2%). Antibiotic added group showed significantly higher body weight gain than other treatments (p<0.05). However, no significant differences were observed in feed intake and feed efficiency among treatments (p>0.05). The addition of green tea by-product to diets tended to decrease blood LDL cholesterol content compared to control group although there were no significant differences among treatments (p>0.05). Addition of green tea by-product increased docosahexaenoic acid (DHA) in blood plasma and tended to decrease cholesterol content in chicken meat, but a significant difference was not observed (p>0.05). The values of TBA in chicken meat decreased in groups fed diets with green tea-by product and antibiotics compared to control group (p<0.05). The crude protein content in chicken meat was decreased slightly in treatments with green tea by-product and antibiotics supplementation. The abdominal fat was increased in chickens fed with diets with green tea by-product compared to the control (p<0.05).
The leaves of Vaccinium bracteatum Thunb. are a source of traditional herbal medicines found in East Asia. The present study aimed to evaluate the mechanisms underlying the antidepressant-like effects of water extract of V. bracteatum Thunb. leaves (VBLW) in a mouse model of chronic restraint stress (CRS) and to identify the possible molecular in vitro mechanisms of the neuroprotective effects. The CRS-exposed mice were orally administered VBLW (100 and 200 mg/kg) daily for 21 days consecutively. The behavioral effects of VBLW were assessed through the forced swim test (FST) and the open field test (OFT). The levels of serum corticosterone (CORT), corticotropin releasing hormone (CRH), and adrenocorticotropin hormone (ACTH), brain monoamines, such as serotonin, dopamine, and norepinephrine, and serotonin turnover by tryptophan hydroxylase 2 (TPH2), serotonin reuptake (SERT), and monoamine oxidase A (MAO-A) were evaluated, in addition to the extracellular signal-regulated kinases (ERKs)/protein kinase B (Akt) signaling pathway. CRS-exposed mice treated with VBLW (100 and 200 mg/kg) showed significantly reduced immobility time and increased swimming and climbing times in the FST, and increased locomotor activity in the OFT. Moreover, CRS mice treated with VBLW exhibited significantly decreased CORT and ACTH, but enhanced brain monoamine neurotransmitters. In addition, CRS mice treated with VBLW had dramatically decreased protein levels of MAO-A and SERT, but increased TPH2 protein levels in the hippocampus and the PFC. Similarly, VBLW significantly upregulated the ERKs/Akt signaling pathway in the hippocampus and the PFC. Furthermore, VBLW showed neuroprotective effects via increased CREB phosphorylation in CORT-induced cell injury that were mediated through the ERK/Akt/mTOR signaling pathways. These results suggested that the antidepressant-like effects of VBLW might be mediated by the regulation of the HPA axis, glucocorticoids, and serotonin turnover, such as TPH2, SERT, and MAO-A, as well as the concentration of monoamine neurotransmitters, and the activities of ERK and Akt phosphorylation, which were possibly associated with neuroprotective effects.
Background. The objective of the present study was to perform a bioguided fractionation of unripe Rubus coreanus Miquel (uRC) and evaluate the lipid accumulation system involvement in its antiobesity activity as well as study the uRC mechanism of action. Results. After the fractionation, the BuOH fraction of uRC (uRCB) was the most active fraction, suppressing the differentiation of 3T3-L1 adipocytes in a dose-dependent manner. Moreover, after an oral administration for 8 weeks in HFD-induced obese mice, uRCB (10 and 50 mg/kg/day) produced a significant decrease in body weight, food efficiency ratio, adipose tissue weight and LDL-cholesterol, serum glucose, TC, and TG levels. Similarly, uRCB significantly suppressed the elevated mRNA levels of PPARγ in the adipose tissue in vivo. Next, we investigated the antiobesity effects of ellagic acid, erycibelline, 5-hydroxy-2-pyridinemethanol, m-hydroxyphenylglycine, and 4-hydroxycoumarin isolated from uRCB. Without affecting cell viability, five bioactive compounds decreased the lipid accumulation in the 3T3-L1 cells and the mRNA expression levels of key adipogenic genes such as PPARγ, C/EBPα, SREBP-1c, ACC, and FAS. Conclusion. These results suggest that uRC and its five bioactive compounds may be a useful therapeutic agent for body weight control by downregulating adipogenesis and lipogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.