Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of seed dormancy and adaptation to abiotic stresses. Previous work identified OsPYL/RCARs as functional ABA receptors regulating ABA-dependent gene expression in Oryza sativa. OsPYL/RCARs thus are considered to be good candidate genes for improvement of abiotic stress tolerance in crops. This work demonstrates that the cytosolic ABA receptor OsPYL/RCAR5 in O. sativa functions as a positive regulator of abiotic stress-responsive gene expression. The constitutive expression of OsPYL/RCAR5 in rice driven by the Zea mays ubiquitin promoter induced the expression of many stress-responsive genes even under normal growth conditions and resulted in improved drought and salt stress tolerance in rice. However, it slightly reduced plant height under paddy field conditions and severely reduced total seed yield. This suggests that, although exogenous expression of OsPYL/RCAR5 is able to improve abiotic stress tolerance in rice, fine regulation of its expression will be required to avoid deleterious effects on agricultural traits.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter-b-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin 4?7 (GA 4?7 ) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.