SummaryIn plants, a1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function.Biochemical analyses of the N-glycan structure confirmed that a1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1.Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants.We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.
Bruchid (Callosobruchus chinenesis L.) and pod sucking bug (Riptortus clavatus Thunberg) are serious insect pests during the reproduction stage and seed storage period of legume crops worldwide. However, few sources of resistance to each of these insects have been identified and characterized, and no genetic studies have been carried out with simultaneous tests of these two insects. In this study, the inheritance of seed resistance to Callosobruchus chinenesis L. and Riptortus clavatus Thunberg was examined in a mungbean cultivar, Jangan mungbean, which was developed by backcrossing with the V2709 resistant donor. The F1, F2, and F3 seed generations were developed from the cross between susceptible and resistant parents, and evaluated for resistance to the two insects. It was found that resistance to bruchid and bean bug was controlled by a single dominant gene in the F1 and F2 seeds. However, the segregation pattern of reciprocal reaction to each insect in F2 seeds showed seeds were susceptible to each insect. These results suggest that the resistance genes in Jangan mungbean to bug and weevil are either different or closely linked with each other. A genetic linkage map 13.7 cM in length with 6 markers was successfully constructed. Two QTLs were identified for bruchid resistance, and a QTL for bean bug resistance was detected. One of the QTLs for resistance to bruchid was shared with the QTL for bean bug. These newly developed closely linked markers will be used for cloning of the resistance genes to bruchid and bean bug in the future.
Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions.
A core collection is a subset that represents genetic diversity of the total collection. Soybean (Glycine max (L.) Merr.) is one of major food and feed crops. It is the world’s most cultivated annual herbaceous legume. Constructing a core collection for soybean could play a pivotal role in conserving and utilizing its genetic variability for research and breeding programs. To construct and evaluate a Korean soybean core collection, genotypic and phenotypic data as well as population structure, were analyzed. The Korean soybean core collection consisted of 430 accessions selected from 2,872 collections based on Affymetrix Axiom® 180k SoyaSNP array data. The core collection represented 99% of genotypic diversity of the total collection. Analysis of population structure clustered the core collection into five subpopulations. Accessions from South Korea and North Korea were distributed across five subpopulations. Analysis of molecular variance indicated that only 2.01% of genetic variation could be explained by geographic origins while 16.18% of genetic variation was accounted for by subpopulations. Genome-wide association study (GWAS) for days to flowering, flower color, pubescent color, and growth habit confirmed that the core collection had the same genetic diversity for tested traits as the total collection. The Korean soybean core collection was constructed based on genotypic information of the 180k SNP data. Size and phenotypic diversity of the core collection accounted for approximately 14.9% and 18.1% of the total collection, respectively. GWAS of core and total collections successfully confirmed loci associated with tested traits. Consequently, the present study showed that the Korean soybean core collection could provide fundamental and practical material and information for both soybean genetic research and breeding programs.
In many organisms, trehalose protects against several environmental stresses, such as heat, desiccation, and salt, probably by stabilizing protein structures and lipid membranes. Trehalose synthesis in yeast is mediated by a complex of trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2). In this study, genes encoding TPS1 and TPS2 were isolated from Zygosaccharomyces rouxii (designated ZrTPS1 and ZrTPS2, respectively). They were functionally identified by their complementation of the tps1 and tps2 yeast deletion mutants, which are unable to grow on glucose medium and with heat, respectively. Full-length ZrTPS1 cDNA is composed of 1476 nucleotides encoding a protein of 492 amino acids with a molecular mass of 56 kDa. ZrTPS2 cDNA consists of 2843 nucleotides with an open reading frame of 2700 bp, which encodes a polypeptide of 900 amino acids with a molecular mass of 104 kDa. The amino acid sequence encoded by ZrTPS1 has relatively high homology with TPS1 of Saccharomyces cerevisiae and Schizosaccharomyces pombe, compared with TPS2. Western blot analysis showed that the antibody against S. cerevisiae TPS1 recognizes ZrTPS1. Under normal growth conditions, ZrTPS1 and ZrTPS2 were highly and constitutively expressed, unlike S. cerevisiae TPS1 and TPS2. Salt stress and heat stress reduced the expression of the ZrTPS1 and ZrTPS2 genes, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.