In this paper, we used a thin polycarbonate (PC) chamber to improve the performance of an electrowetting lenticular lens array. The polycarbonate chamber changed the radius of curvature (ROC) of the oil acting as a lens, which increased the dioptric power of the liquid lens to 1666.7D. The increase in dioptric power required a reduction in the distance between the optical center of the lens and the display pixels under the chamber, which was accomplished by reducing the thickness of the chamber. The optimal thickness of the chamber was determined to be 0.5mm. Using this thin PC chamber, transmittance and viewing angle were measured and compared with an electrowetting lenticular lens with a conventional 1mm poly methyl methacrylate (PMMA) chamber was done. Crosstalk which degrades clear 3D images, is an inevitable factor in lenticular lens type multi-view systems. With the 0.5mm PC chamber, the viewing zone was expanded and the ratio of the crosstalk area was reduced, which resulted in a clear 3D image. The new method of depositing the electrode layer also ensured the uniform operation of the liquid lens array.
The main advantage of an integral imaging system is that it does not cause a vergence-accommodation conflict to the viewer, as happens in other types of three-dimensional (3D) display systems. However, it still has the disadvantage of having a limited depth range. In this Letter, the fabrication of the electrowetting liquid lens array with an adjustable focal length is presented. With the liquid microlens array, we propose a focus tunable integral imaging system having an enhanced expressible depth range. The fabricated lens array has 1 mm lens pitch, 100 µm sidewall,
20
×
14
m
m
total size,
−
542
to
−
89
D focus variability, and 11.6 ms response time. The fabrication process, a measurement of optical characteristics, and a demonstration of the focus tunable integral imaging system are presented in this Letter.
While there are many ways to realize autostereoscopic 2D/3D switchable displays, the electrowetting lenticular lens is superior due to the high optical efficiency and short response time. In this paper, we propose a more stable electrowetting lenticular lens by controlling the quantity of oil. With a large amount of oil, the oil layer was broken and the lenticular lens was damaged at relatively low voltage. Therefore, controlling the amount of oil is crucial to obtain the required dioptric power with stability. We proposed a new structure to evenly adjust the volume of oil and the dioptric power was measured by varying the volume of oil. Furthermore, the optical characteristics were finally analyzed in the electrowetting lenticular lens array with a proper amount of oil.
Augmented reality (AR) is an interactive experience of a real-world environment where the objects that reside in the real world are enhanced by computer-generated perceptual information. Despite its attractive features, AR has not become popular because of the visual fatigue that many people face when they experience it. Many methods have been introduced to solve this visual fatigue problem and one of these methods is an integral imaging system that provides images almost continuous viewpoints and full parallax. However, the integral imaging system, which uses a lens array with a fixed focal length, has limited depth of focus (DOF) range. As a result, images that are outside of the DOF range become distorted. In this paper, a vari-focal liquid lens array was fabricated and the optical characteristics of the lens array were evaluated. Using the vari-focal liquid lens array, the DOF range was extended and high-resolution images are realized without restriction of depth range in an AR system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.