Fetal dextrocardia is a type of cardiac malposition where the major axis from base to apex points to the right side. This condition is usually associated with a wide spectrum of complex cardiac defects. As a result, dextrocardia is conceptually difficult to understand and diagnose on prenatal ultrasound. The advantage of four-dimensional sonography with spatiotemporal image correlation (STIC) is that this modality can facilitate fetal cardiac examination. A novel method known as fetal intelligent navigation echocardiography (FINE) allows automatic generation of nine standard fetal echocardiography views in normal hearts by applying intelligent navigation technology to STIC volume datasets. In fetuses with congenital heart disease, FINE is also able to demonstrate abnormal cardiac anatomy and relationships when there is normal cardiac axis and position. However, this technology has never been applied to cases of cardiac malposition. We report herein for the first time, a case of fetal dextrocardia and situs solitus with complex congenital heart disease in which the FINE method was invaluable in diagnosing multiple abnormalities and defining complex anatomic relationships. We also review the literature on prenatal sonographic diagnosis of dextrocardia (with an emphasis on situs solitus), as well as tricuspid atresia with its associated cardiac features.
Transcatheter patent ductus arteriosus closure (TCPC) is an emerging treatment for low birth weight extremely premature neonates (EPNs). Left pulmonary artery (LPA) and descending aorta (DAO) obstruction are described device-related complications, however, data on mid- and long-term vascular outcomes are lacking. A retrospective analysis of EPNs who underwent successful TCPC at our institution from 03/2013 to 12/2018 was performed. Two-dimensional echocardiography and spectral Doppler velocities from various time points before and after TCPC were used to identify LPA and DAO flow disturbances. A total of 44 EPNs underwent successful TCPC at a median (range) procedural weight of 1150 g (755–2500 g). Thirty-two (73%) patients were closed with the AVP II and 12 (27%) with the Amplatzer Piccolo device. LPA and DAO velocities on average remained within normal limits and improved spontaneously in long-term follow up (26.1 months, range 1–75 months). One patient, who had concerning LPA flow characteristics immediately after device implant (peak velocity 2.6 m/s) developed progressive LPA stenosis requiring stent placement 3 months post-procedure. In the remaining infants, including 7 (16%) who developed LPA and 3 (7%) who developed DAO flow disturbances (range 2–2.4 m/s), all had progressive normalization of flow velocities over time. TCPC can be performed safely in EPNs with a low incidence of LPA and DAO obstruction. In the absence of significant progressive vascular obstruction in the early post-procedure period, mild increases in LPA and DAO flow velocities tend to improve spontaneously and normalize in long-term follow-up.
Tetralogy of Fallot with pulmonary atresia, a severe form of tetralogy of Fallot, is characterized by the absence of flow from the right ventricle to the pulmonary arteries. This cardiac abnormality is challenging and complex due to its many different anatomic variants. The main source of variability is the pulmonary artery anatomy, ranging from well-formed, confluent pulmonary artery branches to completely absent native pulmonary arteries replaced by major aorto-pulmonary collateral arteries (MAPCAs) that provide all of the pulmonary blood flow. Since the four-chamber view is usually normal on prenatal sonography, the diagnosis may be missed unless additional cardiac views are studied. Fetal Intelligent Navigation Echocardiography (FINE) is a novel method developed recently that allows automatic generation of nine standard fetal echocardiography views in normal hearts by applying "intelligent navigation" technology to spatiotemporal image correlation volume datasets. We report herein for the first time, two different cases of tetralogy of Fallot with pulmonary atresia having variable sources of pulmonary blood flow in which the prenatal diagnosis was made successfully using the FINE method. Virtual Intelligent Sonographer Assistance (VIS-Assistance) and automatic labeling (both features of FINE) were very helpful in making such diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.