The effect of pomegranate juice (PJ) or grapefruit juice (GFJ) on CYP3A activity was studied in vitro and in healthy human volunteers. In human liver microsomes, the mean 50% inhibitory concentrations (IC(50)) for PJ and GFJ versus CYP3A (triazolam alpha-hydroxylation) were 0.61% and 0.55%, (v/v) respectively, without preincubation of inhibitor with microsomes. After preincubation, the IC(50) for PJ increased to 0.97% (P < .05), whereas the IC(50) for GFJ decreased to 0.41% (P < .05), suggesting mechanism-based inhibition by GFJ but not PJ. Pretreatment of volunteer subjects (n = 13) with PJ (8 oz) did not alter the elimination half-life, volume of distribution, or clearance of intravenous midazolam (2 mg). Administration of PJ also did not affect C(max), total area under the curve (AUC), or clearance of oral midazolam (6 mg). However, GFJ (8 oz) increased midazolam C(max) and AUC by a factor of 1.3 and 1.5, respectively, and reduced oral clearance to 72% of control values. Thus, PJ does not alter clearance of intravenous or oral midazolam, whereas GFJ impairs clearance and elevates plasma levels of oral midazolam.
The kinetic and dynamic interaction of caffeine and zolpidem was evaluated in a double-blind, single-dose, six-way crossover study of 7.5 mg zolpidem (Z) or placebo (P) combined with low-dose caffeine (250 mg), high-dose caffeine (500 mg), or placebo. Caffeine coadministration modestly increased maximum plasma concentration (C(max)) and area under the plasma concentration-time curve of zolpidem by 30-40%, whereas zolpidem did not significantly affect the pharmacokinetics of caffeine or its metabolites. Compared to P+P, Z+P significantly increased sedation, impaired digit-symbol substitution test performance, slowed tapping speed and reaction time, increased EEG relative beta amplitude, and impaired delayed recall. Caffeine partially, but not completely, reversed most pharmacodynamic effects of zolpidem. Thus, caffeine only incompletely reverses zolpidem's sedative and performance-impairing effects, and cannot be considered as an antidote to benzodiazepine agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.