The effect of the addition of different amounts of olive leaf (1, 2.5, and 5%, m/m) during Buža olive cv. oil production on the quantitative production parameters, composition, and sensory characteristics of the obtained oils were investigated in this study. The addition of leaf during oil extraction increased oil yield and extractability index by 97% compared to the control oil. The addition of leaf during extraction increased the concentration of pigments in oils, and the oil positive sensory attributes intensities, such as fruitiness and green grass/leaf notes. The influence on oil phenolic composition was dependent on the amount of leaf added. When 1% leaf was added, most of the phenolic compounds were preserved, while the addition of leaf at 5% decreased the concentration of the majority of phenols, especially secoiridoids by 45% compared to the control oil. The addition of leaf slightly increased the concentration of fatty acid ethyl esters and waxes in the oils. The obtained results indicate that particular importance should be given to the amount of olive leaf present in olive paste during oil extraction, since it apparently can increase the extractability of oil, but can also have negative effects on phenolic composition when added in excess.
The beneficial properties of polyphenols are widely recognized, and polyphenol-rich olive oil, which is part of the typical Mediterranean diet, has been identified as having positive health effects. However, over the past decade, olive leaves have been discovered as an alternative polyphenol-rich source. This is particularly interesting in the context of the growing interest in functional foods, as well as in terms of the management of biological waste, including olive leaves that are left over from the production of olive oil. Previous studies on olive leaves confirmed that they have a high phenolic content, which explains their previously described strong antibacterial, antimicrobial and antiviral activity. Therefore, the major aim of our work is to comprehensively determine olive leaf phenolic content in cultivars Istarska bjelica, Leccino and Buža as a natural source of bioactive compounds suitable for daily consumption in the form of infusion. For this purpose, we examined the influence of olive leaf cultivar, maceration time and temperature on the phenolic composition of final infusions. Phenolic compounds were analysed by liquid chromatography (LC) coupled to a triple quadrupole mass spectrometer (LC-QQQ). As expected, the results indicate the significant influence of not only the olive cultivar but also of maceration parameters on the qualitative and quantitative phenolic composition. The highest phenolic compound content was obtained in the infusion of Istarska bjelica leaves after 15 min of maceration. However, the Buža olive leaf infusion had the most diverse phenolic composition. Furthermore, we designed several functional olive leaf infusion mixtures with phenolic compositions adjusted based on the desired health effect. The results show the role of phenolic composition adjustment in the development and improvement of the quality of functional olive leaf infusions.
Despite the high economic and nutritional value as major positive aspects, olive oil production has an unfavourable side, which is the negative environmental impact caused by the generation of significant amounts of liquid and solid wastes. Therefore, the implementation of sustainable technologies to add value to the olive oil production process is a matter of great interest. This study aimed to review novel solutions dealing with the utilisation of olive oil production by-products while taking into account sustainable waste management options. The most promising technologies for the production of high-added value products from olive oil production by-products have been described with a special attention to the sustainable nonthermal technologies for the extraction of bioactive phenolic compounds, and the key findings of such investigations were reviewed. All described technologies are environmentally friendly and show great potential. Nevertheless, further researches are required to optimise and increase their applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.