The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones.
Heterozygosity for mutations in the BRCA1 gene in humans confers high risk for developing breast cancer, but a biochemical basis for this phenotype has not yet been determined. Evidence has accumulated implicating BRCA1, in the maintenance of genomic integrity and the protection of cells against DNA double strand breaks (DSB). Here we present evidence that human cells heterozygous for BRCA1 mutations exhibit impaired DNA end-joining, which is the major DSB repair pathway in mammalian somatic cells. Using an in vivo host cell end-joining assay, we observed that the ®delity of DNA end-joining is strongly reduced in three BRCA1 +/7 cell lines in comparison to two control cell lines. Moreover, cell-free BRCA1 +/7 extracts are unable to promote accurate DNA end-joining in an in vitro reaction. The steady-state level of the wild type BRCA1 protein was signi®cantly lower than the 50% expected in BRCA1 +/7 cells and thus may underlie the observed endjoining defect. Together, these data strongly suggest that BRCA1 is necessary for faithful rejoining of broken DNA ends and that a single mutated BRCA1 allele is sucient to impair this process. This defect will compromise genomic stability in BRCA1 germ-line mutation carriers, triggering the genetic changes necessary for the initiation of neoplastic transformation.
The products of recombination activating gene (RAG)1 and RAG2 initiate the lymphoid-specific phase of the V(D)J recombination by creating a DNA double-strand break (dsb), leaving hairpin-sealed coding ends. The next step uses the general DNA repair machinery of the cells to resolve this dsb. Several genes involved in both V(D)J recombination and DNA repair have been identified through the analysis of in vitro mutants (Chinese hamster ovary cells) and in vivo situations of murine and equine severe combined immunodeficiency (scid). These studies lead to the description of the Ku–DNA-dependent protein kinase complex and the XRCC4 factor. A human SCID condition is characterized by an absence of B and T lymphocytes. One subset of these patients also demonstrates an increased sensitivity to the ionizing radiation of their fibroblasts and bone marrow precursor cells. This phenotype is accompanied by a profound defect in V(D)J recombination with a lack of coding joint formation, whereas signal joints are normal. Functional and genetic analyses distinguish these patients from the other recombination/repair mutants, and thus define a new group of mutants whose affected gene(s) is involved in sensitivity to ionizing radiation and V(D)J recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.