Quantitative PCR (qPCR) targeting Dehalococcoides mccartyi (Dhc) biomarker genes supports effective management at sites impacted with chlorinated ethenes. To establish correlations between Dhc biomarker gene abundances and ethene formation (i.e., detoxification), 859 groundwater samples representing 62 sites undergoing monitored natural attenuation or enhanced remediation were analyzed. Dhc 16S rRNA genes and the vinyl chloride (VC) reductive dehalogenase genes bvcA and vcrA were detected in 88% and 61% of samples, respectively, from wells with ethene. Dhc 16S rRNA, bvcA, vcrA, and tceA (implicated in cometabolic reductive VC dechlorination) *
The Mineral Trap, or Min‐Trap™, is a monitoring well‐based sampler designed to collect direct physical evidence of reactive mineral formation in situ without collecting soil or rock core samples. The Min‐Trap consists of a nonreactive granular medium (e.g., silica sand) within water‐permeable mesh pillows that are supported inside a slotted polyvinyl chloride housing that is incubated within a conventional monitoring well. The primary objective of the Min‐Trap in this application is to collect reactive minerals that are forming in the aquifer in a retrievable format that can be submitted for laboratory analysis. To evaluate the capability of Min‐Traps to capture reactive iron minerals, both a laboratory tank test and a field test were conducted. Both tests confirmed that iron sulfide minerals form in the Min‐Trap under sulfate reducing conditions within several weeks. Analysis of the precipitated minerals via the AMIBA analysis suite showed that they almost entirely consisted of weak acid soluble (biogenic, microcrystalline) ferrous iron‐based minerals, and at least two thirds of the sulfur‐containing minerals were monosulfides (i.e., mackinawite) at the end of each test. Scanning electron microscopy confirmed the colocation of iron and sulfur in the mineral masses. The dominance of the ferrous iron and reduced sulfur verifies that little to no oxidation of the captured minerals occurred between sample collection and analysis. A subsurface soil core was collected during the field test next to the Min‐Trap‐containing well. AMIBA results were consistent between the native soil and the Min‐Trap except for much higher strong acid soluble (crystalline) ferric iron in the native soil when compared to the silica sand of the Min‐Trap, as expected. This work shows that Min‐Traps are useful for documenting the formation of reactive iron sulfides (FeSx) that can form during in situ anaerobic biostimulation and can drive complementary abiotic treatment of chlorinated volatile organic compounds. Mineralogical data obtained from Min‐Traps can be applied to assess remedial objectives at several stages of the remedial program, including initial characterization, alternatives evaluation, feasibility testing, remedy optimization, and transition from active treatment to passive remedial methods.
Biostimulation to promote reductive dechlorination is widely practiced, but the value of adding an exogenous nitrogen (N) source (e.g., NH4 +) during treatment is unclear. This study investigates the effect of NH4 + availability on organohalide-respiring Dehalococcoides mccartyi (Dhc) growth and reductive dechlorination in enrichment cultures derived from groundwater (PW4) and river sediment (TC) impacted with chlorinated ethenes. In PW4 cultures, the addition of NH4 + increased cis-1,2-dichloroethene (cDCE)-to-ethene dechlorination rates about 5-fold (20.6 ± 1.6 versus 3.8 ± 0.5 μM Cl– d‑1), and the total number of Dhc 16S rRNA gene copies were about 43-fold higher in incubations with NH4 + ((1.8 ± 0.9) × 108 mL–1) compared to incubations without NH4 + ((4.1 ± 0.8) × 107 mL–1). In TC cultures, NH4 + also stimulated cDCE-to-ethene dechlorination and Dhc growth. Quantitative polymerase chain reaction (qPCR) revealed that Cornell-type Dhc capable of N2 fixation dominated PW4 cultures without NH4 +, but their relative abundance decreased in cultures with NH4 + amendment (i.e., 99 versus 54% of total Dhc). Pinellas-type Dhc incapable of N2 fixation were responsible for cDCE dechlorination in TC cultures, and diazotrophic community members met their fixed N requirement in the medium without NH4 +. Responses to NH4 + were apparent at the community level, and N2-fixing bacterial populations increased in incubations without NH4 +. Quantitative assessment of Dhc nitrogenase genes, transcripts, and proteomics data linked Cornell-type Dhc nifD and nifK expression with fixed N limitation. NH4 + additions also demonstrated positive effects on Dhc in situ dechlorination activity in the vicinity of well PW4. These findings demonstrate that biostimulation with NH4 + can enhance Dhc reductive dechlorination rates; however, a “do nothing” approach that relies on indigenous diazotrophs can achieve similar dechlorination end points and avoids the potential for stalled dechlorination due to inhibitory levels of NH4 + or transformation products (i.e., nitrous oxide).
Monitored natural attenuation (MNA) is commonly used as a remedy for trichloroethene (TCE) in anaerobic groundwater; however, MNA has not been applied to TCE contamination in aerobic groundwater. Under aerobic conditions, bacteria initiate the degradation of many organic substances with oxygenase enzymes. Several of these enzymes are known to degrade TCE through a fortuitous reaction known as cometabolism. There are commercially available qPCR assays that can determine the number of gene copies of these enzymes. If the qPCR assay could be used to predict the first‐order rate constant for cometabolism of TCE, the qPCR assay could be used to screen sites to determine whether MNA was a plausible remedy for TCE contamination. This study reevaluated data from water samples that were collected from 19 wells on five sites in Minnesota, New York, and Utah. Data had previously been published on the rate constant for cometabolism of TCE in the water samples as determined by a 14C‐assay and the abundance of gene copies for five enzymes that cometabolize TCE as determined using a qPCR assay. The Michaelis‐Menten (Haldane) kinetic parameters for cometabolism of TCE and the abundance of DNA for the five oxygenase enzymes were used to predict the rate constant for cometabolism of TCE. The predicted rate constants were evaluated and validated by comparing them to the rate constants derived from the 14C‐assay. For predicted rate constants greater than 0.003 per year, the predicted rate constants agreed with the measured rate constants within a factor of three. The qPCR assay serves as a convenient screening tool to determine whether MNA is a plausible remedy for an aerobic plume of TCE.
Adaptive site management and aggressive bioremediation in the source zone of a complex chlorinated dense nonaqueous phase liquid (DNAPL) site reduced total chlorinated hydrocarbon mass discharge by nearly 80%. Successful anaerobic bioremediation of chlorinated hydrocarbons can be impaired by inadequate concentrations of electron donors, competing electron acceptors, specific inhibitors such as chloroform, and potentially by high contaminant concentrations associated with residual DNAPL. At the study site, the fractured bedrock aquifer was impacted by a mixture of chlorinated solvents and associated daughter products. Concentrations of 1,1,2,2‐tetrachloroethane (1,1,2,2‐TeCA), 1,1,2‐trichloroethane (1,1,2‐TCA), and 1,2‐dichloroethane (1,2‐DCA) were on the order of 100 to 1000 mg/L. Chloroform was present as a co‐contaminant and background sulfate concentrations were approximately 400 mg/L. Following propylene glycol injections, concentrations of organohalide‐respiring bacteria including Dehalococcoides and Dehalogenimonas spp. increased by two to three orders of magnitude across most of the source area. Statistical analysis indicated that reaching volatile fatty acid concentrations greater than 1000 mg/L and depleting sulfate to concentrations less than 50 mg/L were required to achieve a Dehalococcoides concentration greater than the 104 cells/mL recommended for generally effective reductive dechlorination. In a limited area, chloroform concentrations greater than 5 mg/L inhibited growth of Dehalococcoides populations despite the availability of electron donor and otherwise appropriate geochemical conditions. After implementing a groundwater recirculation system targeting the inhibited area, chloroform concentrations decreased permitting significant increases in concentrations of Dehalococcoides and vinyl chloride reductase gene copies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.