The cation-independent mannose 6-phosphate receptor (CI-MPR) is a single transmembrane domain glycoprotein that plays a major role in the trafficking of lysosomal enzymes from the trans-Golgi network to the endosomal-lysosomal (EL) system. Because dysfunction of EL system is associated with a variety of neurodegenerative disorders, it is possible that the CI-MPR may have a role in regulating neuronal viability after toxicity/injury. In the present study, we report that 192-IgG-saporin-induced loss of basal forebrain cholinergic neurons causes a transient upregulation of CI-MPR protein levels in surviving neurons of the basal forebrain and frontal cortex but not in the brainstem region, which was relatively spared by the immunotoxin. This was accompanied by a parallel time-dependent increase in other EL markers, ie, cathepsin D, Rab5, and LAMP2 in the basal forebrain region, whereas in the frontal cortex the levels of cathepsin D, and to some extent Rab5, were increased. Given the critical role of the EL system in the clearance of abnormal proteins in response to changing conditions, it is likely that the observed increase in the CI-MPR and components of the EL system in surviving neurons after 192-IgG-saporin treatment represents an adaptive mechanism to restore the metabolic/structural abnormalities induced by the loss of cholinergic neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.