Holographic light modulation is the most efficient method to shape laser light into well-defined patterns and is therefore the means of choice for many intensity demanding applications. During the last two decades, spatial light modulators based on liquid crystals prevailed among several technologies and became the standard tool to shape light holographically. But in the near future, this status might be challenged by acousto-optic deflectors. These devices are well known for their excelling modulation rates and high optical power resilience. But only few scattered precedents exist that demonstrate their holographic capabilities, despite the many interesting properties that they provide. We implemented a holographic acousto-optic light modulation (HALM) system, that is based on displaying holograms on acousto-optic deflectors. We found that this system can eliminate the ubiquitous coherent artifacts that arise in holography through the inherent motion of acousto-optic holograms. That distinguishes our approach from any other holographic modulation technique and allows to reconstruct intensity patterns of the highest fidelity. A mathematical description of this effect is presented and experimentally confirmed by reconstructing images holographically with unprecedented quality. Our results suggest that HALM promotes acousto-optic deflectors from highly specialized devices to full-fledged spatial light modulators, that can compete in a multitude of applications with LC-SLMs. Especially applications that require large optical output powers, high modulation speeds or accurate gray-scale intensity patterns will profit from this technology. We foresee that HALM may play a major role in future laser projectors and displays, structured illumination microscopy, laser material processing and optical trapping.
Acousto-optic deflectors allow the creation of multiple optical traps by time-sharing, that is, by rapidly cycling the laser focus between designated spatial locations. The traps thus formed are not permanent. Here, we successfully demonstrate the creation of multiple and permanent traps by means of acousto-optic deflectors driven by specially encoded RF signals. The generation of complex acoustic signals allows us to treat such devices as super-fast spatial light modulators. Using this technique, it is possible to generate several static optical trap arrays and switch them at kilohertz (kHz) rates, allowing independent control of each trap group. Additionally, we discuss the compatibility of this method with precise force and position measurements and the improvement in their frequency bandwidth compared to time-sharing optical tweezers, especially when many objects are trapped.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.