Pre-eclampsia is a multifactorial pregnancy-associated disorder characterized by angiogenic dysbalance and systemic inflammation; however, animal models that combine these two pathophysiological conditions are missing. Here, we introduce a novel double-hit pre-eclampsia mouse model that mimics the complex multifactorial conditions present during pre-eclampsia and allows for the investigation of early consequences for the fetus. Adenoviral overexpression of soluble fms-like tyrosine kinase (sFlt-1) and lipopolysaccharide (LPS) administration at mid-gestation in pregnant mice resulted in hypertension and albuminuria comparable to that of the manifestation in humans. A metabolomics analysis revealed that pre-eclamptic dams have increased plasma concentrations of phosphadytilcholines. The fetuses of both sexes were growth restricted; however, in males a brain-sparing effect was seen as compensation for this growth restriction. According to the plasma metabolomics, male fetuses showed changes in amino acid metabolism, while female fetuses showed pronounced alterations in lipid metabolism. Our results show that combined exposure to sFlt-1 and LPS mimics the clinical symptoms of pre-eclampsia and affects fetal growth in a sex-specific manner, with accompanying metabolome changes.
The effects of CHI3L1 genetic variation on circulating YKL-40 levels are partly mediated by methylation profiles. In our study YKL-40 levels, but not CHI3L1 SNPs or methylation levels, were associated with childhood asthma.
Circadian rhythm synchronizes each body function with the environment and regulates physiology. Disruption of normal circadian rhythm alters organismal physiology and increases disease risk. Recent epidemiological data and studies in model organisms have shown that maternal circadian disruption is important for offspring health and adult phenotypes. Less is known about the role of paternal circadian rhythm for offspring health. Here, we disrupted circadian rhythm in male mice by night-restricted feeding and showed that paternal circadian disruption at conception is important for offspring feeding behavior, metabolic health, and oscillatory transcription. Mechanistically, our data suggest that the effect of paternal circadian disruption is not transferred to the offspring via the germ cells but initiated by corticosterone-based parental communication at conception and programmed during in utero development through a state of fetal growth restriction. These findings indicate paternal circadian health at conception as a newly identified determinant of offspring phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.