PET scans of the mouse brain are usually performed with anesthesia to immobilize the animal. However, it is desirable to avoid the confounding factor of anesthesia in mouse-brain response. Methods: We developed and validated brain PET imaging of awake, freely moving mice. Head-motion tracking was performed using radioactive point-source markers, and we used the tracking information for PET-image motion correction. Regional 18 F-FDG brain uptake in a test, retest, and memantine-challenge study was measured in awake ( n = 8) and anesthetized ( n = 8) C57BL/6 mice. An awake uptake period was considered for the anesthesia scans. Results: Awake (motion-corrected) PET images showed an 18 F-FDG uptake pattern comparable to the pattern of anesthetized mice. The test–retest variability (represented by the intraclass correlation coefficient) of the regional SUV quantification in the awake animals (0.424–0.555) was marginally lower than that in the anesthetized animals (intraclass correlation coefficient, 0.491–0.629) over the different regions. The increased memantine-induced 18 F-FDG uptake was more pronounced in awake (+63.6%) than in anesthetized (+24.2%) animals. Additional behavioral information, acquired for awake animals, showed increased motor activity on a memantine challenge (total distance traveled, 18.2 ± 5.28 m) compared with test–retest (6.49 ± 2.21 m). Conclusion: The present method enables brain PET imaging on awake mice, thereby avoiding the confounding effects of anesthesia on the PET reading. It allows the simultaneous measurement of behavioral information during PET acquisitions. The method does not require any additional hardware, and it can be deployed in typical high-throughput scan protocols.
Background Currently, the evidence on synaptic abnormalities in neuropsychiatric disorders—including obsessive–compulsive disorder (OCD)—is emerging. The newly established positron emission tomography (PET) ligand ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) provides the opportunity to visualize synaptic density changes in vivo, by targeting the synaptic vesicle protein 2A (SV2A). Here, we aim to evaluate such alterations in the brain of the SAP90/PSD-95-associated protein 3 (Sapap3) knockout (ko) mouse model, showing an abnormal corticostriatal neurotransmission resulting in OCD-like behaviour. Methods Longitudinal [11C]UCB-J µPET/CT scans were acquired in Sapap3 ko and wildtype (wt) control mice (n = 9/group) to study SV2A availability. Based on the Logan reference method, we calculated the volume of distribution (VT(IDIF)) for [11C]UCB-J. Both cross-sectional (wt vs. ko) and longitudinal (3 vs. 9 months) volume-of-interest-based statistical analysis and voxel-based statistical parametric mapping were performed. Both [11C]UCB-J ex vivo autoradiography and [3H]UCB-J in vitro autoradiography were used for the validation of the µPET data. Results At the age of 3 months, Sapap3 ko mice are already characterized by a significantly lower SV2A availability compared to wt littermates (i.a. cortex − 12.69%, p < 0.01; striatum − 14.12%, p < 0.001, thalamus − 13.11%, p < 0.001, and hippocampus − 12.99%, p < 0.001). Healthy ageing in control mice was associated with a diffuse and significant (p < 0.001) decline throughout the brain, whereas in Sapap3 ko mice this decline was more confined to the corticostriatal level. A strong linear relationship (p < 0.0001) was established between the outcome parameters of [11C]UCB-J µPET and [11C]UCB-J ex vivo autoradiography, while such relationship was absent for [3H]UCB-J in vitro autoradiography. Conclusions [11C]UCB-J PET is a potential marker for synaptic density deficits in the Sapap3 ko mouse model for OCD, parallel to disease progression. Our data suggest that [11C]UCB-J ex vivo autoradiography is a suitable proxy for [11C]UCB-J PET data in mice.
In small animal positron emission tomography (PET) studies, given the spatial resolution of preclinical PET scanners, quantification in small regions can be challenging. Moreover, in scans where animals are placed away from the center of the field of view (CFOV), e.g. in simultaneous scans of multiple animals, quantification accuracy can be compromised due to the loss of spatial resolution towards the edge of the FOV. Here, we implemented a spatially variant resolution model to improve quantification in small regions and to allow simultaneous scanning of multiple animals without compromising quantification accuracy. The scanner’s point spread function (PSF) was characterized across the FOV and modelled using a spatially variant and asymmetric Gaussian function. The spatially variant PSF (SVPSF) was then used for resolution modelling in the iterative reconstruction. To assess the image quality, a line source phantom in a cold and warm background, as well as mouse brain [18F]FDG scans, were performed. The SVPSF and the vendor’s maximum a posteriori (MAP3D) reconstructions produced uniform spatial resolution across the scanner FOV, but MAP3D resulted in lower spatial resolution. The line sources recovery coefficient using SVPSF was similar at the CFOV and at the edge of the FOV. In contrast, the other tested reconstructions produced lower recovery coefficient at the edge of the FOV. In mouse brain reconstructions, less spill-over from hot regions to cold regions, as well as more symmetric regional brain uptake was observed using SVPSF. The contrast in brain images was the highest using SVPSF, in mice scanned at the CFOV and off-center. Incorporation of a spatially variant resolution model for small animal brain PET improves quantification accuracy in small regions and produces consistent image spatial resolution across the FOV. Therefore, simultaneous scanning of multiple animals can benefit by using spatially variant resolution modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.