Despite significant developments in renal cell carcinoma (RCC) detection and molecular pathology, mortality has been steadily rising. Advanced RCC remains an incurable disease. Better clinical management tools, i.e., RCC biomarkers, have yet to emerge. Thymine-dimers (TDs) were traditionally considered photo-dependent pre-mutagenic lesions, occurring exclusively during ultra-violet light exposure. Non-oxidative, direct, and preferential byproducts of DNA photochemical reactions, TDs, have recently shown evidence regarding UVR-independent formation. In this study, we investigate, for the first time, TD expression within RCC tumor tissue and tumor-adjacent healthy renal parenchyma using a TD-targeted IHC monoclonal antibody, clone KTM53. Remarkably, out of the 54 RCCs evaluated, 77.8% showed nuclear TD-expression in RCC tumor tissue and 37% in the tumor-adjacent healthy renal parenchyma. A comprehensive report regarding quantitative/qualitative TD-targeted immunostaining was elaborated. Two main distribution models for TD expression within RCC tumor tissue were identified. Statistical analysis showed significant yet moderate correlations regarding TD-positivity in RCC tissue/tumor-adjacent healthy renal parenchyma and TNM stage at diagnosis/lymphatic dissemination, respectively, indicating possible prognostic relevance. We review possible explanations for UVR-independent TD formation and molecular implications regarding RCC carcinogenesis. Further rigorous molecular analysis is required in order to fully comprehend/validate the biological significance of this newly documented TD expression in RCC.
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Data on bacterial or fungal pathogens and their impact on the mortality rates of Western Romanian COVID-19 patients are scarce. As a result, the purpose of this research was to determine the prevalence of bacterial and fungal co- and superinfections in Western Romanian adults with COVID-19, hospitalized in in-ward settings during the second half of the pandemic, and its distribution according to sociodemographic and clinical conditions. The unicentric retrospective observational study was conducted on 407 eligible patients. Expectorate sputum was selected as the sampling technique followed by routine microbiological investigations. A total of 31.5% of samples tested positive for Pseudomonas aeruginosa, followed by 26.2% having co-infections with Klebsiella pneumoniae among patients admitted with COVID-19. The third most common Pathogenic bacteria identified in the sputum samples was Escherichia coli, followed by Acinetobacter baumannii in 9.3% of samples. Commensal human pathogens caused respiratory infections in 67 patients, the most prevalent being Streptococcus penumoniae, followed by methicillin-sensitive and methicillin-resistant Staphylococcus aureus. A total of 53.4% of sputum samples tested positive for Candida spp., followed by 41.1% of samples with Aspergillus spp. growth. The three groups with positive microbial growth on sputum cultures had an equally proportional distribution of patients admitted to the ICU, with an average of 30%, compared with only 17.3% among hospitalized COVID-19 patients with negative sputum cultures (p = 0.003). More than 80% of all positive samples showed multidrug resistance. The high prevalence of bacterial and fungal co-infections and superinfections in COVID-19 patients mandates for strict and effective antimicrobial stewardship and infection control policies.
In the contemporary era of early detection, with mostly curative initial treatment for prostate cancer (PC), mortality rates have significantly diminished. In addition, mean age at initial PC diagnosis has decreased. Despite technical advancements, the probability of erectile function (EF) recovery post radical prostatectomy (RP) has not significantly changed throughout the last decade. Due to virtually unavoidable intraoperative cavernous nerve (CN) lesions and operations with younger patients, post-RP erectile dysfunction (ED) has now begun affecting these younger patients. To address this pervasive limitation, a plethora of CN lesion animal model investigations have analyzed the use of systemic/local treatments for EF recovery post-RP. Most promisingly, neuregulins (NRGs) have demonstrated neurotrophic effects in both neurodegenerative disease and peripheral nerve injury models. Recently, glial growth factor 2 (GGF2) has demonstrated far superior, dose-dependent, neuroprotective/restorative effects in the CN injury rat model, as compared to previous therapeutic counterparts. Although potentially impactful, these initial findings remain limited and under-investigated. In an effort to aid clinicians, our paper reviews post-RP ED pathogenesis and currently available therapeutic tools. To stimulate further experimentation, a standardized preparation protocol and in-depth analysis of applications for the CN injury rat model is provided. Lastly, we report on NRGs, such as GGF2, and their potentially revolutionary clinical applications, in hopes of identifying relevant future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.