Honey was previously considered to be one of the main food sources of human pyrrolizidine alkaloid (PA) exposure in Europe. However, comprehensive analyses of honey and tea sampled in the Berlin retail market revealed unexpected high PA amounts in teas. This study comprised the analysis of 87 honey as well as 274 tea samples including black, green, rooibos, melissa, peppermint, chamomile, fennel, nettle, and mixed herbal tea or fruit tea. Total PA concentrations in tea ranged from < LOD to 5647 µg kg(-1), while a mean value of about 10 µg kg(-1) was found in honey samples. Additionally, herbal drugs were investigated to identify the source of PA in teas. Results suggest that PA in tea samples are most likely a contamination caused by co-harvesting of PA-producing plants. In some cases such as fennel, anise or caraway, it cannot be excluded that these plants are able to produce PA themselves.
Pyrrolizidine alkaloids (PAs) are secondary metabolites of plant families such as Asteraceae or Boraginaceae and are suspected to be genotoxic carcinogens. Recent investigations revealed their frequent occurrence in honey and particularly in tea. To obtain a comprehensive overview of the PA content in animal-and plant-derived food from the European market, and to provide a basis for future risk analysis, a total of 1105 samples were collected in 2014 and 2015. These comprised milk and milk products, eggs, meat and meat products, (herbal) teas, and (herbal) food supplements collected in supermarkets, retail shops, and via the internet. PAs were detected in a large proportion of plant-derived foods: 91% of the (herbal) teas and 60% of the food supplements contained at least one individual PA. All types of (herbal) teas investigated were found to contain PAs, with a mean concentration of 460 µg kg −1 dry tea (corresponding to 6.13 µg L −1 in [herbal] tea infusion). The highest mean concentrations were found in rooibos tea (599 µg kg −1 dry tea, 7.99 µg L −1 tea infusion) and the lowest in camomile tea (274 µg kg −1 dry tea, 3.65 µg L −1 tea infusion). Occurrence of PAs in food supplements was found to be highly variable, but in comparable ranges as for (herbal) tea. The highest concentrations were present in supplements containing plant material from known PA-producing plants. In contrast, only 2% of the animalderived products, in particular 6% of milk samples and 1% of egg samples, contained PAs. Determined levels in milk were relatively low, ranged between 0.05 and 0.17 µg L −1 and only trace amounts of 0.10-0.12 µg kg −1 were found in eggs. No PAs were detected in the other animal-derived products.ARTICLE HISTORY
In tandem mass spectrometry the multiple reaction monitoring (MRM) mode is normally used for targeted analysis but this mode also has the potential to screen for structural similarities of analytes. On the basis of the fact that in general similar molecular structures result in similar fragments or losses of neutrals, this approach was used for pyrrolizidine alkaloid (PA) screening but could also be easily adapted to screen for other compound classes. PA are plant toxins of which several hundred individual compounds have been identified. Our MRM screening approach uses the structural relation and similar core structure of all PA which results in a common and thus predictable mass spectrometric fragmentation behaviour. On this basis a method was developed which screens for PA structures by MRM transitions and allows the detection of each individual PA down to a low microgram per kilogram concentration range. The approach was applied to investigate plants from the families of Asteraceae (several species of Senecio and Eupatorium), Boraginaceae (Echium, Cynoglossum, Borago and Anchusa officinalis as well as Heliotropium europaeum) and Fabaceae (Crotalaria incana) for a complete qualitative and quantitative PA characterisation. All analytes that were detected as possible PA by MRM screening were further investigated by recording product ion spectra. Analytes which exhibited a typical PA fragmentation pattern were either confirmed as PA or otherwise deleted as false positive signals (false positive rate was below 10 %). Sum formulas of confirmed PA were determined by additional measurements applying high resolution mass spectrometry. In that way 121 unknown PA were identified and for the first time complete PA profiles of different PA plants were delivered.
High-resolution mass spectrometry (HRMS) was applied for the detection of grayanotoxins (GrTx) in a contaminated honey sample. This sample was provided by a hospital due to a suspicion of intoxication after a patient had shown the typical symptoms of GrTx poisoning. Subsequent analysis proved the contamination with high amounts of GrTx and other toxins belonging to grayanane-type diterpenoids. This group of natural toxins is synthesised by the plant family Ericaceae and comprises more than 60 individual toxins, but only one compound is available as a reference standard. We applied a screening approach that easily confirms the presence or absence of GrTx without access to standards. By searching for predictable mass spectrometric fragment ions, including typical in-source fragments arising from collision-induced dissociation during electrospray ionisation, the complete toxin profile was screened and allowed the mass spectrometric identification of 15 individual GrTx. The potential of this approach is especially demonstrated by the fact that at least two of these toxins have not been previously described in the literature. A semi-quantitative estimation indicated a total toxin concentration of 358 mg kg(-1). An investigation of 49 honeys from the German retail market did not reveal the presence of GrTx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.