An improved procedure for determination of the residual DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical concentration was proposed taking into account the absorbance of both DPPH free radicals and DPPH nonradical (1,1-diphenyl-2-picrylhydrazine) stable form. The calculated residual DPPH free radical concentrations were compared with those obtained from a calibration curve and variation coefficients below 10 % were found.
Tinctures of eleven plants used as spices (basil, celery, dill, horsetail, lovage, marjoram, milfoil, oregano, parsley, rosemary, and thyme) were tested for their antiradical properties by means of the DPPH (1,1-diphenyl-2-picrylhydrazyl) assay over a two year period. Seven of these plants (basil, lovage, marjoram, milfoil, oregano, rosemary and thyme) were selected to obtain a mixture, which was tested in situ as antioxidant on vegetable and animal fats by an accelerated oxidation test at 110°C. The herbal extract also showed antimicrobial activity against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 49399), Escherichia coli (ATCC 25922) and Candida albicans (ATCC 24433).
Thymus vulgaris essential oil is one of the most common oils used mainly in food industry but it could also have applications in medicine and pharmacy. The chemical composition of this essential oil depends on the plant material harvesting time, phenomenological stages, meteorological conditions and growing area of plants. In our study, four different Thymus vulgaris L. var. Donne Valley essential oils have been extracted and characterised. The essential oils have been extracted from plants before and after flowering in two different years. There is an important difference between the chemical composition of oils obtained from plants harvested before and after flowering. Thymol and carvacrol have been found as the major components, but the percentage depends on the phenological stages of the plants and the year of harvesting. Furthermore, the composition of the minor components changed.
The aim of the present study was to establish the influence of high-temperature heating on the composition and thermal behavior of coffee oils obtained from Arabica green and roasted coffee beans, respectively. Morphological studies performed using scanning electron microscopy revealed the oil bodies uniformly distributed within the cells in both types of coffee beans analyzed. The obtained oils have a fatty acid composition rich in linoleic acid, palmitic acid, oleic acid, stearic acid, arachidic acid and linolenic acid. The total content of saturated fatty acids of investigated oils was 49.38 and 46.55%, the others being unsaturated fatty acids. The thermal behavior and thermo-oxidative stability of coffee oils extracted from green coffee beans and roasted coffee beans, the coffee oil high-temperature heated up to 200 °C, were investigated using simultaneous thermal analysis TG/DTG/DTA, in an oxidizing atmosphere. The data obtained for the analyzed samples depend mainly on the nature and compositions of fatty acids, and to a lesser extent on the roasting process of the coffee beans and the high-temperature heating process of the extracted oil. The chromatographic and TG/DTG/DTA data suggest that Arabica coffee oil has great potential for use in technological processes which require high-temperature heating (e.g. food industry or pastries).
Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.