The novel betacoronavirus SARS-CoV-2 causes a form of severe pneumonia disease, termed COVID-19. To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a sub nM IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The
in vivo
efficacy of the antibody is demonstrated in the Syrian hamster and in the hACE2 mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11 derived human IgG1 with FcγR silenced Fc (COR-101) is currently undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.
Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.
The novel betacoranavirus SARS-CoV-2 causes a form of severe pneumonia disease, termed COVID-19 (coronavirus disease 2019). Recombinant human antibodies are proven potent neutralizers of viruses and can block the interaction of viral surface proteins with their host receptors. To develop neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor binding domain (RBD) of the S1 subunit of the viral spike (S) protein were selected by phage display. The selected antibodies were produced in the scFv-Fc format and 30 showed more than 80% inhibition of spike (S1-S2) binding to cells expressing ACE2, assessed by flow cytometry screening assay. The majority of these inhibiting antibodies are derived from the VH3-66 V-gene. The antibody STE90-C11 showed an IC50 of 0.56 nM in a plaque-based live SARS-CoV-2 neutralization assay. The crystal structure of STE90-C11 in complex with SARS-CoV-2-RBD was solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. In contrast to other published anti-SARS-CoV-2 antibodies, the binding of STE90-C11 is not blocked by known RBD mutations, endowing our antibody with higher intrinsic resistance to those possible escape mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.