Oral riociguat is a soluble guanylate cyclase (sGC) stimulator that targets the nitric oxide (NO)–sGC–cyclic guanosine monophosphate pathway with a dual mode of action: directly by stimulating sGC, and indirectly by increasing the sensitivity of sGC to NO. It is rapidly absorbed, displays almost complete bioavailability (94.3%), and can be taken with or without food and as crushed or whole tablets. Riociguat exposure shows pronounced interindividual (60%) and low intraindividual (30%) variability in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH), and is therefore administered using an individual dose-adjustment scheme at treatment initiation. The half-life of riociguat is approximately 12 h in patients and approximately 7 h in healthy individuals. Riociguat and its metabolites are excreted via both renal (33–45%) and biliary routes (48–59%), and dose adjustment should be performed with particular care in patients with moderate hepatic impairment or mild to severe renal impairment (no data exist for patients with severe hepatic impairment). The pharmacodynamic effects of riociguat reflect the action of a vasodilatory agent, and the hemodynamic response to riociguat correlated with riociguat exposure in patients with PAH or CTEPH in phase III population pharmacokinetic/pharmacodynamic analyses. Riociguat has a low risk of clinically relevant drug interactions due to its clearance by multiple cytochrome P450 (CYP) enzymes and its lack of effect on major CYP isoforms and transporter proteins at therapeutic levels. Riociguat has been approved for the treatment of PAH and CTEPH that is inoperable or persistent/recurrent after surgical treatment.Electronic supplementary materialThe online version of this article (doi:10.1007/s40262-017-0604-7) contains supplementary material, which is available to authorized users.
Bivalent ligands of G protein-coupled receptors have been shown to simultaneously either bind to two adjacent receptors or to bridge different parts of one receptor protein. Recently, we found that bivalent agonists of muscarinic receptors can simultaneously occupy both the orthosteric transmitter binding site and the allosteric vestibule of the receptor protein. Such dualsteric agonists display a certain extent of subtype selectivity, generate pathway-specific signaling, and in addition may allow for designed partial agonism. Here, we want to extend the concept to bivalent antagonism. Using the phthal- and naphthalimide moieties, which bind to the allosteric, extracellular site, and atropine or scopolamine as orthosteric building blocks, both connected by a hexamethonium linker, we were able to prove a bitopic binding mode of antagonist hybrids for the first time. This is demonstrated by structure-activity relationships, site-directed mutagenesis, molecular docking studies, and molecular dynamics simulations. Findings revealed that a difference in spatial orientation of the orthosteric tropane moiety translates into a divergent M2/M5 subtype selectivity of the corresponding bitopic hybrids.
Oral administration of molidustat to healthy volunteers elicited a dose-dependent increase in endogenous EPO. These results support the ongoing development of molidustat as a potential new treatment for patients with renal anaemia.
Predicting oral bioavailability (F oral The OrBiTo database was found to be largely representative of previously published datasets.)43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.
Keywords:Physiologically-based pharmacokinetics (PBPK); modelling and simulation (M&S); absorption; oral bioavailability (F oral ); biopharmaceutics; drug database
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.