This paper shows a numerical polynomial approach to the topic of how bipolar junction transistors (BJT) and field effect transistors (FET) can be safe or unsafe when operating in explosive atmospheres. The most used transistors have been analyzed thermographically, working in a controlled environment, to characterize their thermal behavior. The target is to prevent the transistor from creating conditions that achieve the minimum activation energy for combustible vapors, dusts, or fibers/flyings. We have brought the transistors to their nominal values, specified by working currents and voltages, and confirmed that the effect of heat dissipation in a BJT is non-linear and much greater than in a MOSFET. We have experimentally found a thermal difference of more than 200ºC of overheating of a common BJT compared to a MOSFET with similar load in fixed polarization. We found temperatures above 300ºC in BJTs operating within their nominal ranges and conditions, when the accepted “safe” temperature is not supposed to exceed 200ºC in any case. Through a performance-based analysis focused on temperature, our research suggests that equipment with BJT technologies should not be implemented in certain areas of classified locations or explosive zones; so MOSFET technologies are preferable
Surface Dielectric Barrier Discharge (SDBD) is a well-known technology for active aerodynamic flow control with low power consumption. It is a type of plasma actuation for flow control with no moving parts and very fast response times. Research on SDBD flow control over the years has shown great potential for flow separation, boundary layer transition, drag reductions and suppression of local heating. A major area of research on SDBD flow control lies in increasing the effectiveness of SDBD actuators with new electrode configurations, surface materials, and plasma array designs. This review aims to provide a comprehensive report of research performed on SDBD flow control over the last 2 decades with a focus on SDBD reactor designs. Aspects of SDBD flow control including discharge morphology and actuation mechanism through momentum and energy transfer have been discussed in depth. Additionally, the future of research in SDBD actuated flow control has been explored. This review can serve as the baseline to develop new SDBD reactor designs for specific applications with improved effectiveness and advanced systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.