Since the isolation of the first giant virus, the Mimivirus, by T.J. Rowbotham in a cooling tower in Bradford, UK, and after its characterisation by our group in 2003, we have continued to develop novel strategies to isolate additional strains. By first focusing on cooling towers using our original time-consuming procedure, we were able to isolate a new lineage of giant virus called Marseillevirus and a new Mimivirus strain called Mamavirus. In the following years, we have accumulated the world's largest unique collection of giant viruses by improving the use of antibiotic combinations to avoid bacterial contamination of amoeba, developing strategies of preliminary screening of samples by molecular methods, and using a high-throughput isolation method developed by our group. Based on the inoculation of nearly 7,000 samples, our collection currently contains 43 strains of Mimiviridae (14 in lineage A, 6 in lineage B, and 23 in lineage C) and 17 strains of Marseilleviridae isolated from various environments, including 3 of human origin. This study details the procedures used to build this collection and paves the way for the high-throughput isolation of new isolates to improve the record of giant virus distribution in the environment and the determination of their pangenome.
Objective: Following the isolation of a Marseillevirus from the stool of a healthy young Senegalese and a Mimivirus from a Tunisian patient with pneumonia, we attempted to isolate other giant viruses of amoebae from a large human stool collection. Methods: During the period 2010-2011, a total of 1,605 stool samples, including 115 from Tunisian patients with pneumonia, were cultured on amoebae. We used a recently developed high-throughput isolation system to detect amoebae plaque lysis on agar plates; this method allows for the testing of 100 samples per plate per week. The giant virus was identified by sequencing of genes conserved in Megavirales. Results: A single giant virus, called Shan, was isolated from the stool of a Tunisian patient with pneumonia who responded poorly to antibiotics. This virus has an icosahedral shape typical of members of the family Mimiviridae and a size of 640 ± 10 nm. Phylogenetic analyses showed that Shan virus was classified as a member of Mimivirus lineage C that infects amoebae. Conclusion: Only one isolate was obtained in this study, suggesting that giant viruses of amoebae are rare in human stool. The isolation of Shan virus from a patient with pneumonia brings into question the etiological role of this virus and its subsequent release in stool.
Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.