Objectives To investigate the immune systems’ response (and its influencing factors) to vaccination with BNT162b2 or mRNA-1273. Methods 531 vaccinees, recruited from health care professionals, donated samples before, in between, and after the administration of the two doses of the vaccine. T- and B-cell responses were examined via Interferon-γ-release assay as well as detection of antibodies against different epitopes of SARS-CoV-2 (S1 and NCP) via ELISA and binding surrogate neutralization assay. Results were correlated with influence factors such as age, sex, prior infection, vaccine received (BNT162b2 or mRNA-1273), and immunosuppression. Furthermore, antinuclear antibodies (ANA) were measured to screen for autoimmune responses following the vaccination with an mRNA vaccine. Results No markers of immunity against SARS-CoV-2 were found before the first vaccination. Two weeks after it, specific responses against SARS-CoV-2 were already measurable (median±median absolute deviation (MAD): anti-S1 IgG: 195.5±172.7 BAU/ml; IgA: 6.7±4.9 OD; surrogate neutralization: 39±23.7 %), which were significantly increased two weeks after the second dose (anti-S1 IgG: 3744±2571.4 BAU/ml; IgA: 12±0 OD; surrogate neutralization: 100±0 %, IFN-γ: 1897.2±886.7 mIU/ml). Responses were stronger for younger participants (this difference decreasing after the second dose). Further influences were previous infection with SARS-CoV-2 (causing significantly stronger responses after the first dose compared to unexposed individuals (p ≤ 0.0001)) and the vaccine received (significantly stronger reactions for recipients of mRNA-1273 after both doses (p < 0.05 – 0.0001)). Some forms of immunosuppression significantly impeded the immune response to the vaccination (with no observable immune response in three immunosuppressed participants). There was no significant induction of ANA by the vaccination (no change in qualitative ANA results (p = 0.2592), nor ANA titers (p = 0.08) from pre to post vaccination. Conclusions Both vaccines elicit strong and specific immune responses against SARS-CoV-2, which become detectable one week (T-cell-response) or two weeks (B-cell-response) after the first dose.
Background/Aims: VEGF-A is induced by oxidative stress, and functions as a survival factor for various cell types, including retinal pigment epithelial (RPE) cells. Anti-vascular endothelial growth factor (VEGF) drugs like aflibercept and bevacizumab have shown to be most effective in treating neovascular age-related macular degeneration (AMD), however uptake of the drugs might lead to interference with cell physiology. Herein, we evaluated the significance of the Fc receptor (FcR) within this context and moreover explored the impact of VEGF inhibition under normal conditions as well as under oxidative stress, in terms of potential adverse effects. Methods: ARPE-19 (human RPE) cells were treated with aflibercept and bevacizumab in presence or absence of H2O2 as oxidative stress stimulus. After 24h cells were evaluated for drug uptake, VEGF-A expression and secretion, levels of intracellular reactive oxygen species (ROS) as well as cell proliferation. Experiments were repeated with cells being pre-incubated with an FcR inhibitor prior to drug application. Results: Both drugs inhibited extracellular levels of VEGF-A and were taken up into the RPE, resulting in significantly reduced intracellular levels of VEGF-A. When oxidative stress was applied, intracellular ROS levels in cells treated with both drugs rose, and cell proliferation was reduced. Prior incubation with the FcR inhibitor lessened the uptake of bevacizumab, but not aflibercept into RPE cells, and simultaneously enhanced cell survival under oxidative stress conditions. Conclusions: Our results indicate that uptake and accumulation of aflibercept and bevacizumab within RPE cells affect the intracellular VEGF-A metabolism negatively, leading to a biologically relevant reduced cell survival under oxidative stress. The FcR plays a substantial role in the uptake of bevacizumab, but not aflibercept, which allows an enhanced RPE cell survival through FcR blockage in an environment dominated by oxidative stress, as clinically significant for various inflammatory retinal disorders.
Characterization of the naturally acquired B and T cell immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for the development of public health and vaccination strategies to manage the burden of COVID-19 disease. We conducted a prospective, cross-sectional analysis in COVID-19 recovered patients at various time points over a 10-month period in order to investigate how circulating antibody levels and interferon-gamma (IFN-γ) release by peripheral blood cells change over time following natural infection. From March 2020 till January 2021, we enrolled 412 adults mostly with mild or moderate disease course. At each study visit, subjects donated peripheral blood for testing of anti-SARS-CoV-2 IgG antibodies and IFN-γ release after SARS-CoV-2 S-protein stimulation. Anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies were positive in 316 of 412 (76.7%) and borderline in 31 of 412 (7.5%) patients. Our confirmation assay for the presence of neutralizing antibodies was positive in 215 of 412 (52.2%) and borderline in 88 of 412 (21.4%) patients. Likewise, in 274 of 412 (66.5%) positive IFN-γ release and IgG antibodies were detected. With respect to time after infection, both IgG antibody levels and IFN-γ concentrations decreased by about half within 300 days. Statistically, production of IgG and IFN-γ were closely associated, but on an individual basis, we observed patients with high-antibody titres but low IFN-γ levels and vice versa. Our data suggest that immunological reaction is acquired in most individuals after natural infection with SARS-CoV-2 and is sustained in the majority of patients for at least 10 months after infection after a mild or moderate disease course. Since, so far, no robust marker for protection against COVID-19 exists, we recommend utilizing both, IgG and IFN-γ release for an individual assessment of the immunity status.
The fungal pathogen Histoplasma capsulatum causes a spectrum of disease, ranging from local pulmonary infection to disseminated disease. The organism seeks residence in macrophages, which are permissive for its survival. Hypoxia-inducible factor 1α (HIF-1α), a principal regulator of innate immunity to pathogens, is necessary for macrophage-mediated immunity to H. capsulatum in mice. In the present study, we analyzed the effect of HIF-1α in human macrophages infected with this fungus. HIF-1α stabilization was detected in peripheral blood monocyte-derived macrophages at 2 to 24 h after infection with viable yeast cells. Further, host mitochondrial respiration and glycolysis were enhanced. In contrast, heat-killed yeasts induced early, but not later, stabilization of HIF-1α. Since the absence of HIF-1α is detrimental to host control of infection, we asked if large amounts of HIF-1α protein, exceeding those induced by H. capsulatum, altered macrophage responses to this pathogen. Exposure of infected macrophages to an HIF-1α stabilizer significantly reduced recovery of H. capsulatum from macrophages and produced a decrement in mitochondrial respiration and glycolysis compared to those of controls. We observed recruitment of the autophagy-related protein LC3-II to the phagosome, whereas enhancing HIF-1α reduced phagosomal decoration. This finding suggested that H. capsulatum exploited an autophagic process to survive. In support of this assertion, inhibition of autophagy activated macrophages to limit intracellular growth of H. capsulatum. Thus, enhancement of HIF-1α creates a hostile environment for yeast cells in human macrophages by interrupting the ability of the pathogen to provoke host cell autophagy.
BackgroundHeterologous vaccinations against SARS-CoV-2 with ChAdOx1 nCoV-19 and a second dose of an mRNA-based vaccine have been shown to be more immunogenic than homologous ChAdOx1 nCoV-19. In the current study, we examined the kinetics of the antibody response to the second dose of three different vaccination regimens (homologous ChAdOx1 nCoV-19 vs. ChAdOx1 nCoV-19 + BNT162b2 or mRNA-1273) against SARS-CoV-2 in a longitudinal manner; whether there are differences in latency or amplitude of the early response and which markers are most suitable to detect these responses.MethodsWe performed assays for anti-S1 IgG and IgA, anti-NCP IgG and a surrogate neutralization assay on serum samples collected from 57 participants on the day of the second vaccination as well as the following seven days.ResultsAll examined vaccination regimens induced detectable antibody responses within the examined time frame. Both heterologous regimens induced responses earlier and with a higher amplitude than homologous ChAdOx1 nCoV-19. Between the heterologous regimens, amplitudes were somewhat higher for ChAdOx1 nCoV-19 + mRNA-1273. There was no difference in latency between the IgG and IgA responses. Increases in the surrogate neutralization assay were the first changes to be detectable for all regimens and the only significant change seen for homologous ChAdOx1 nCoV-19.DiscussionBoth examined heterologous vaccination regimens are superior in immunogenicity, including the latency of the response, to homologous ChAdOx1 nCoV-19. While the IgA response has a shorter latency than the IgG response after the first dose, no such difference was found after the second dose, implying that both responses are driven by separate plasma cell populations. Early and steep increases in surrogate neutralization levels suggest that this might be a more sensitive marker for antibody responses after vaccination against SARS-CoV-2 than absolute levels of anti-S1 IgG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.