Abstract. Given the short span of instrumental precipitation records in the South American Altiplano, long-term hydroclimatic records are needed to understand the nature of climate variability and to improve the predictability of precipitation, a key natural resource for the socio-economic development in the Altiplano and adjacent arid lowlands. In this region grows Polylepis tarapacana, a long-lived tree species that is very sensitive to hydroclimatic changes and have been widely used for tree-ring studies in the central and southern Altiplano. However, in the northern sector of the Peruvian and Chilean Altiplano (16º–19º S) still exist a gap of hydroclimatic tree-ring records. Our study provides an overview of the temporal evolution of annual precipitation for the period 1625–2013 CE at the northern South American Altiplano, allowing for the identification of wet or dry periods based on a regional reconstruction composed by three P. tarapacana chronologies. An increase in the occurrence rate of extreme dry events, together with a decreasing trend in the reconstructed precipitation, have been recorded since the 1970s decade in the northern Altiplano within the context of the last ~four centuries. The average precipitation of the last 17-year stands out as the driest in our 389-years reconstruction. We revealed a temporal and spatial synchrony across the Altiplano region of wet conditions during the first half of the 19th century and the drought conditions since mid 1970s recorded by independent tree-ring based hydroclimate reconstructions and several paleoclimatic records based on other proxies available for the tropical Andes. The rainfall reconstruction provides also valuable information about the ENSO influences in the northern Altiplano precipitation. The spectral properties of the rainfall reconstruction showed strong imprints of ENSO variability at decadal, sub-decadal and inter-annual time-scale, in particular from the Pacific N3 sector. Overall, the remarkable recent reduction in precipitation in comparison with previous centuries, the increase in extreme dry events and the coupling between precipitation and ENSO variability reported by this work is essential information in the context of the growing demand for water resources in the Altiplano that will contribute to a better understanding of the vulnerability/resilience of the region to the projected evapotranspiration increase for the 21st century associated to global warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.