Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids, multiple host shifts by parasites, and suggest that the chytrid last common ancestor was a parasite of phytoplankton.
In recent years, our understanding of the roles of bacterial communities in the Antarctic Ocean has substantially improved. It became evident that Antarctic marine bacteria are metabolically versatile, and even closely related strains may differ in their functionality and, therefore, affect the ecosystem differently. Nevertheless, most studies have been focused on entire bacterial communities, with little attention given to individual taxonomic groups. Antarctic waters are strongly influenced by climate change; thus, it is crucial to understand how changes in environmental conditions, such as changes in water temperature and salinity fluctuations, affect bacterial species in this important area. In this study, we show that an increase in water temperature of 1 °C was enough to alter bacterial communities on a short-term temporal scale. We further show the high intraspecific diversity of Antarctic bacteria and, subsequently, rapid intra-species succession events most likely driven by various temperature-adapted phylotypes. Our results reveal pronounced changes in microbial communities in the Antarctic Ocean driven by a single strong temperature anomaly. This suggests that long-term warming may have profound effects on bacterial community composition and presumably functionality in light of continuous and future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.