ABSTRACT:The pharmacokinetics and dose proportionality of fexofenadine, a new non-sedating antihistamine, and its enantiomers were characterized after single and multiple-dose administration of its hydrochloride salt. A total of 24 healthy male volunteers (31 98 years) received oral doses of 20, 60, 120 and 240 mg fexofenadine HCl in a randomized, complete four-period cross-over design. Subjects received a single oral dose on day 1, and multiple oral doses every 12 h on day 3 through the morning on day 7. Treatments were separated by a 14-day washout period. Serial blood and urine samples were collected for up to 48 h following the first and last doses of fexofenadine HCl. Fexofenadine and its R(+) and S(− ) enantiomers were analysed in plasma and urine by validated HPLC methods. Fexofenadine pharmacokinetics were linear across the 20-120 mg dose range, but a small disproportionate increase in area under the plasma concentration-time curve (AUC) ( B 25%) was observed following the 240 mg dose. Singledose pharmacokinetics of fexofenadine were predictive of steady-state pharmacokinetics. Urinary elimination of fexofenadine played a minor role (10%) in the disposition of this drug. A 63:37 steady-state ratio of R( +) and S( − ) fexofenadine was observed in plasma. This ratio was essentially constant across time and dose. R( +) and S( −) fexofenadine were eliminated into urine in equal rates and quantities. All doses of fexofenadine HCl were well tolerated after single and multiple-dose administration.
The effect of valproic acid (VPA) on the disposition of carbamazepine-10,11-epoxide (epoxide) was studied in five epileptic patients on chronic carbamazepine (CBZ) therapy. The individual pharmacokinetic parameters influencing epoxide disposition were determined in the presence and absence of VPA. VPA significantly decreased the clearance of unbound epoxide (an in vivo index of epoxide hydrolase activity), but did not appear to affect epoxide formation. VPA also increased the free concentrations of both CBZ and epoxide.
Lotronex (alosetron hydrochloride) is a 5-HT3 receptor antagonist indicated for the treatment of irritable bowel syndrome (IBS) in females whose predominant bowel habit is diarrhea. Alosetron is extensively metabolized by multiple cytochrome P450 (CYP) enzymes, including CYP 2C9 and 3A4. Alprazolam is a short-acting benzodiazepine commonly prescribed for the treatment of anxiety disorders and a potential comedication in patients with IBS. Alprazolam is extensively metabolized by CYP3A4. This clinical study was conducted to assess the potential for a metabolic drug interaction between these two CYP3A4 substrates. This was an open-label, randomized, two-period, crossover study in 12 healthy female and male volunteers to determine the effect of concomitant administration of alosetron at the recommended dose of 1 mg p.o. bid on the pharmacokinetics of alprazolam following a single oral 1 mg dose. The results showed no effect of alosetron on the pharmacokinetics of alprazolam. Mean alprazolam AUC was 210 and 202 ng.h/mL in the absence and the presence of alosetron, respectively. Therefore, alprazolam may be safely coadministered with alosetron without the need for dosage adjustment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.