Nanoparticles are a cause for concern because of their potential toxic effects on human health and the environment. The aim of this study was to assess the toxic effect of chitosan-coated magnetite nanoparticles (11.00±4.7 nm) on Drosophila melanogaster through the observation of hemolymph composition, DNA damage, larval survival and lifespan of flies. Chitosan-coated magnetite nanoparticles were synthesized by coprecipitation method. Drosophila larvaes and adults were exposed to 500 and 1000 ppm nanoparticles solution. After exposure, each type of larval hemocytes was recognized. Comet assay was performed to detect the DNA damage in the hemocytes. Also, the larval survival and lifespan of exposed flies were observed. Our results showed the toxic effect of the chitosan-coated magnetite nanoparticles through the increment of hemocytes, the emergence of lamellocytes, the presence of apoptotic hemocytes and the DNA damage detected by comet assay. In addition, nanoparticles produce decreasing of larval survival and shortening of the mean and maximum lifespan. The toxic effect the chitosan-coated magnetite nanoparticles is directly associated with 1000 ppm. No DNA damage was observed at 500 ppm.
Three new species of mesophragmatica group, Drosophila amaguana, Drosophila shyri and Drosophila ruminahuii from Pasochoa Forest Reserve, northern Ecuadorian Andes, are described. The two subgroups currently composing the mesophragmatica group are renamed as the mesophragmatica subgroup to which the first two species have been added, and the viracochi subgroup to which the latter species has been added. These subgroups are defined based on the direction of the basal scutellar setae, which are divergent in the species of the former subgroup and convergent in the latter
Research on nanomaterial exposure-related health risks is still quite limited; this includes standardizing methods for measuring metals in living organisms. Thus, this study validated an atomic absorption spectrophotometry method to determine fertility and bioaccumulated iron content in Drosophila melanogaster flies after feeding them magnetite nanoparticles (Fe3O4NPs) dosed in a culture medium (100, 250, 500, and 1000 mg kg−1). Some NPs were also coated with chitosan to compare iron assimilation. Considering both accuracy and precision, results showed the method was optimal for concentrations greater than 20 mg L−1. Recovery values were considered optimum within the 95–105% range. Regarding fertility, offspring for each coated and non-coated NPs concentration decreased in relation to the control group. Flies exposed to 100 mg L−1 of coated NPs presented the lowest fertility level and highest bioaccumulation factor. Despite an association between iron bioaccumulation and NPs concentration, the 500 mg L−1 dose of coated and non-coated NPs showed similar iron concentrations to those of the control group. Thus, Drosophila flies’ fertility decreased after NPs exposure, while iron bioaccumulation was related to NPs concentration and coating. We determined this method can overcome sample limitations and biological matrix-associated heterogeneity, thus allowing for bioaccumulated iron detection regardless of exposure to coated or non-coated magnetite NPs, meaning this protocol could be applicable with any type of iron NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.