The aim of this study was to assess the biomechanical properties of intact vertebra augmented using a local osteoenhancement procedure to inject a triphasic calcium sulfate/calcium phosphate implant material. Methods Twenty-one fresh frozen human cadaver vertebra (Th11-L2) were randomized into three groups: treatment, sham, and control (n = 7 each). Treatment included vertebral body access, saline lavage to displace soft tissue and marrow elements, and injection of the implant material to fill approximately 20% of the vertebral body by volume. The sham group included all treatment steps, but without injection of the implant material. The control group consisted of untreated intact osteoporotic vertebra. Load at failure and displacement at failure for each of the three groups were measured in axial compression loading. Results The mean failure load of treated vertebra (4118 N) was significantly higher than either control (2841 N) or sham (2186 N) vertebra (p < 0.05 for: treatment vs. control, treatment vs. sham). Treated vertebra (1.11 mm) showed a significantly higher mean displacement at failure than sham vertebra (0.80 mm) (p < 0.05 for: treatment vs. sham). In the control group, the mean displacement at failure was 0.99 mm. Conclusions This biomechanical study shows that a local osteo-enhancement procedure using a triphasic implant material significantly increases the load at failure and displacement at failure in cadaveric osteoporotic vertebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.