Defence Materials Technology Centre, VIC 3122, AustraliaColloidal processing of the Ultra-High Temperature Ceramic (UHTC) zirconium diboride (ZrB 2 ) to develop nearÀnet-shaping techniques has been investigated. The use of the colloidal processing technique produces higher particle packing that ultimately enables achieving greater densification at lower temperatures and pressures, even pressureless sintering. ZrB 2 suspension formulations have been optimized in terms of rheological behavior. Suspensions were shaped into green bodies (63% relative density) using slip casting. The densification was carried out at 1900°C, 2000°C, and 2100°C, using both hot pressing at 40 MPa and pressureless sintering. The colloidally processed materials were compared with materials prepared by a conventional dry processing route (cold pressed at 50 MPa) and subjected to the same densification procedures. Sintered densities for samples produced by the colloidal route are higher than produced by the dry route (up to 99.5% relative density by hot pressing), even when pressureless sintering is performed (more than 90% relative density). The promising results are considered as a starting point for the fabrication of complex-shaped components that can be densified at lower sintering temperatures without pressure. W.-C. Wei-contributing editor Manuscript No. 31878.
Synroc has evolved over the last 40 years from the titanate full-ceramics developed in the late 1970s to a technology platform that can be applied to produce glass, glass–ceramic, and ceramic waste forms and where there are distinct advantages in terms of waste loading and suppressing volatile losses.A first of a kind Synroc plant for immobilizing intermediate level waste arising from Mo-99 production is currently in detailed engineering at ANSTO.Since the year 2000, Synroc has evolved from the titanate full-ceramics developed in the late 1970s to a technology platform that can be applied to produce glass, glass–ceramic, and ceramic waste forms and where there are distinct advantages in terms of waste loading and suppressing volatile losses. Furthermore recent efforts have focused strongly on waste form development for plutonium-bearing wastes in the UK, for different options for the immobilization of Idaho calcines and most recently developing an engineered waste form for the intermediate level wastes arising from 99Mo production, for the Australian Nuclear Science and Technology Organisation (ANSTO). A variety of other studies are currently in progress, including engineered waste forms for spent fuel and investigating the proliferation risks for titanate-based waste forms containing highly enriched uranium or plutonium. This paper also attempts to give some perspective on Synroc waste forms and process technology development in the nuclear waste management industry.
Abstract:Zirconolite glass-ceramics are being developed as potential wasteforms for the disposition of Pu wastes in the UK. Previous studies utilised a variety of surrogates whilst this work uses both cold-press and sinter and hot isostatic press methods to validate the wasteform with PuO2. A cold press and sinter sample was fabricated as part of a validation study for plutonium incorporation in hot isostatically pressed (HIPed) wasteforms. The results confirmed the cold-press and sinter, achieved successful waste incorporation and a microstructure and phase assemblage that was in agreement with those expected of a HIPed equivalent. A HIP sample was fabricated of the same composition and characterised by SEM and XRD. Results were in agreement with the sintered sample and achieved complete waste incorporation into the glass-ceramic wasteform. These samples have demonstrated successful incorporation of PuO2 into glass-ceramic HIPed wasteforms proposed for processing Pu-based waste-streams in the UK.
Functionally graded materials (FGMs) can be found naturally in many biological structures, for example bamboo and the mollusc shell. They are defined as having a compositional or microstructural gradient, for example the gradation in fibre content in bamboo stems. A continuous bulk functionally graded material has the potential to be an ideal orthopaedic implant for load bearing applications. Due to the fabrication complexities involved in the production of these continuous bulk functionally graded materials, commercialisation and fabrication are still proving to be a challenge to researchers worldwide. This paper presents an overview of the redesigned novel commercially viable process known as the Impeller-Dry-Blending (IDB) process. Results presented in this paper of fabricated functionally graded materials illustrate the potential of IDB to produce continuous bulk functionally graded materials consisting of either compositional or porosity concentration changes. The successful fabrication of these continuous bulk functionally graded materials at such a low cost clearly demonstrates the commercial viability of the IDB process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.