Ab initio electronic structure calculations reveal that interstitial 2p elements (B, C, and N) have dramatic effects on the structural stability and intrinsic magnetic properties of L10-phase FeNi. Among the 3 possible interstitial impurities, only the B improves the L10-phase stability of FeNi and enhances its uniaxial magnetic anisotropy (0.7 MJ m−3) up to 2.6 MJ m−3. The underlying mechanism is elucidated in terms of single-particle energy spectra analyses along with atom- and orbital-resolved magnetocrystalline anisotropy energy, where both the Fe and Ni 3d level changes induced by charge rearrangement and 2p-3d hybridization are responsible. These findings point toward feasibility of enhancing the structural stability and energy product of 3d-only magnetic metals through the interstitial doping with 2p nonmetal elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.