Strongyloides stercoralis is one of the common parasites in tropical areas. It can result in severe clinical syndromes, hyperinfection syndrome or disseminated strongyloidiasis in immunocompromised patients. The treatment of strongyloidiasis is a challenge for clinicians in clinical practice. Failure of treatment is due to autoinfection caused by the parasite life cycle and impairment of host immunity. Ivermectin currently is the treatment of choice. When compared with thiabendazole, it has shown a similar efficacy with better tolerability. However, there is neither consensus in duration of treatment nor in repetition of doses. The keys for management of this tough parasite include proper evaluation and prevention. Stool examination with high sensitivity techniques such as Baermann technique, filter-paper culture and agar-plate culture and specific IgG serology should be used in evaluation for 1 to 2 years. Screening, both stool examination and serology, before patients have immunosuppressive treatment is needed to prevent the severe form of strongyloidiasis.
We confirmed sympatric occurrence of Taenia solium, T. saginata, and T. asiatica in western Thailand. DNA analysis of morphologically identified T. saginata, in a dual infection with T. solium, indicated it was T. asiatica. To our knowledge, this report is the first of T. asiatica and a dual Taenia infection from Thailand.
Strongyloidiasis is a disease caused by Strongyloides stercoralis and remains a neglected tropical infection despite significant public health concerns. Challenges in the management of strongyloidiasis arise from wide ranging clinical presentations, lack of practical high sensitivity diagnostic tests, and a fatal outcome in immunocompromised hosts. Migration, globalization, and increased administration of immunomodulators, particularly during the COVID-19 era, have amplified the global impact of strongyloidiasis. Here, we comprehensively review the diagnostic tests, clinical manifestations, and treatment of strongyloidiasis. The review additionally focuses on complicated strongyloidiasis in immunocompromised patients and critical screening strategies. Diagnosis of strongyloidiasis is challenging because of non-specific presentations and low parasite load. In contrast, treatment is simple: administration of single dosage ivermectin or moxidectin, a recent anthelmintic drug. Undiagnosed infections result in hyperinfection syndrome and disseminated disease when patients become immunocompromised. Thus, disease manifestation awareness among clinicians is crucial. Furthermore, active surveillance and advanced diagnostic tests are essential for fundamental management.
BackgroundSchistosoma mekongi is one of five major causative agents of human schistosomiasis and is endemic to communities along the Mekong River in southern Lao People’s Democratic Republic (Laos) and northern Cambodia. Sporadic cases of schistosomiasis have been reported in travelers and immigrants who have visited endemic areas. Schistosoma mekongi biology and molecular biology is poorly understood, and few S. mekongi gene and transcript sequences are available in public databases.ResultsTranscriptome sequencing (RNA-Seq) of male and female S. mekongi adult worms (a total of three biological replicates for each sex) were analyzed and the results demonstrated that approximately 304.9 and 363.3 million high-quality clean reads with quality Q30 (> 90%) were obtained from male and female adult worms, respectively. A total of 119,604 contigs were assembled with an average length of 1273 nt and an N50 of 2017 nt. From the contigs, 20,798 annotated protein sequences and 48,256 annotated transcript sequences were obtained using BLASTP and BLASTX searches against the UniProt Trematoda database. A total of 4658 and 3509 transcripts were predominantly expressed in male and female worms, respectively. Male-biased transcripts were mostly involved in structural organization while female-biased transcripts were typically involved in cell differentiation and egg production. Interestingly, pathway enrichment analysis suggested that genes involved in the phosphatidylinositol signaling pathway may play important roles in the cellular processes and reproductive systems of S. mekongi worms.ConclusionsWe present comparative transcriptomic analyses of male and female S. mekongi adult worms, which provide a global view of the S. mekongi transcriptome as well as insights into differentially-expressed genes associated with each sex. This work provides valuable information and sequence resources for future studies of gene function and for ongoing whole genome sequencing efforts in S. mekongi.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3086-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.