Artificial intelligence (AI) systems are extensively used today in many fields. In the field of medicine, AI-systems are especially used for the segmentation and classification of medical images. As reliance on such AI-systems increases, it is important to verify that these systems are dependable and not sensitive to bias or other types of errors that may severely affect users and patients. This work investigates the sensitivity of the performance of AI-systems to labeling errors. Such investigation is performed by simulating intentional mislabeling of training images according to different values of a new parameter called "mislabeling balance" and a "corruption" parameter, and then measuring the accuracy of the AI-systems for every value of these parameters. The issues investigated in this work include the amount (percentage) of errors from which a substantial adverse effect on the performance of the AI-systems can be observed, and how unreliable labeling can be done in the training stage. The goals of this work are to raise ethical concerns regarding the various types of errors that can possibly find their way into AI-systems, to demonstrate the effect of training errors, and to encourage development of techniques that can cope with the problem of errors, especially for AI-systems that perform sensitive medical-related tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.