Most parthenogenetic weevil species are postulated to have originated via hybridization, but Wolbachia has also been speculated to play a role via the induction of parthenogenesis. Here, we examine the molecular diversity of Wolbachia and parthenogenetic host genomes. The host species studied here, Eusomus ovulum, is known to be exclusively parthenogenetic and triploid. The E. ovulum populations that we examined had a low genetic diversity of mitochondrial (cytochrome oxidase I gene) and nuclear markers (internal transcribed spacer 2 and elongation factor 1-α gene), and they all were infected by only single bacteria strains (genotyped for five genes according to the multilocus sequence typing system). We found significant signs of linkage disequilibrium and a lack of recombination amongst all of the examined genomes (bacteria and host), which strongly indicates a selective sweep. The lack of heterozygosity in host nuclear genes, missing bisexual populations and selective sweep between the parthenogenetic host and bacteria genomes suggest that parthenogenesis in this species could have originated as a result of infection rather than hybridization. However, the finding that highly similar Wolbachia strains are also present in other parthenogenetic weevils from the same habitat suggests the opposite scenario: bacteria may have infected the already parthenogenetic lineage and taken advantage of the host's unisexual reproduction.
Among eight species of Polydrusus weevils which belong to subgenus Scythodrusus, at least two possess parthenogenetic forms: P. (S.) inustus and P. (S.) pilifer. Both of these species consist of dioecious populations in the Caspian area and of parthenogenetic populations in Eastern Europe (P. (S.) inustus), the Caucasus region (both species) and Middle Asia (P. (S.) pilifer). The origin of parthenogenesis in this subgenus is unresolved; however some data suggest that the parthenogenetic forms are of hybrid ancestry. The genetic distinctness of parthenogenetic Scythodrusus was assessed on the basis of COII, ITS2, EF1‐α and Wolbachiawsp, 16S ribosomal DNA, ftsZ and hcpA sequence comparisons. Both taxa turned out to be monophyletic for all markers, which is an evidence against hybridization of their dioecious ancestors. On the other hand, a high frequency of heterozygous P. (S.) inustus females suggests an origin resulting from hybridization between genetically distinct dioecious representatives of this species. Very similar strains of Wolbachia supergroup A were found in both species, indicating that they have been either inherited from a common ancestor or were transmitted between parthenogenetic Scythodrusus weevils and probably spread randomly across their ranges.
Abstract. Phylogeography, genetic diversity, and demography of central European populations of two flightless xerothermic weevils, Polydrusus inustus and Centricnemus leucogrammus, were studied based on the polymorphism of three mtDNA genes (COII, CytB, and ND1). Results indicate that these xerothermic beetles may have different origins. P. inustus is a recent migrant as the parthenogenetic form has a low level of genetic diversity and lacks a geographic population structure. This is probably a result of a recent (before the end of last glaciation) expansion and/or present dispersal mediated by humans. On the other hand, C. leucogrammus appears to be a relic species as the populations of this species are much more genetically diverse (six distinct clades) and some of the populations are allopatric and others sympatric. They probably diverged and expanded during the last few glaciations. Genetic discontinuities were detected among localities that are now separated by gaps in the distribution. Boundaries (mountains or farmland) separate the populations into three groups: (1) Moravia and Slovakia, (2) the lower Vistula Valley in northern Poland and (3) south-eastern Poland together with western Ukraine. Evidence for recent gene flow was found only among populations from south-eastern Poland and western Ukraine, and between these two groups. One population from northern Poland was surprisingly related to populations in southern Poland, which may be due to extinction of intermediate populations.
Species constituting the family Echiniscidae are highly derived, armoured and inhabit terrestrial habitats, in contrast to other heterotardigrades that are predominantly marine. The genus Echiniscus C.A.S. Schultze, 1840, nominal for the family Echiniscidae, is currently the most speciose tardigrade genus. However, the great morphological variability, in comparison with other heterotardigrade genera, suggests the polyphyletic character of the genus. Here, we analyse new specimens of Echiniscus pseudelegans Séméria, 1994 collected in Japan and conclude that the species as well as two other related taxa, E. elegans Richters, 1907 and E. latifasciatus Dudichev and Biserov, 2000, represent a new genus, Stellariscus, gen. nov. The new genus is characterised by a mixture of peculiar morphological apomorphies: black eyes, star-like dorsal plate sculpturing, no trunk appendages (only cephalic cirri present), two types of ventral plates, and striking sexual dimorphism in both qualitative and quantitative traits. Morphological phylogeny of the family Echiniscidae suggests a close affinity between Stellariscus, Hypechiniscus Thulin, 1928 and Pseudechiniscus Thulin, 1911. The polyphyletic status of both Echiniscus and Testechiniscus Kristensen, 1987 is also inferred. The taxonomic significance of ventral armature in echiniscid phylogeny and taxonomy is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.