Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.
The adult mouse heart possesses an extensive lymphatic plexus draining predominantly the subepicardium and the outer layer of the myocardial wall. However, the development of this plexus has not been entirely explored, partially because of the lack of suitable methods for its visualization as well as prolonged lymphatic vessel formation that starts prenatally and proceeds during postnatal stages. Also, neither the course nor location of collecting vessels draining lymph from the mouse heart have been precisely characterized. In this article, we report that murine cardiac lymphatic plexus development that is limited prenatally only to the subepicardial area, postnatally proceeds from the subepicardium toward the myocardial wall with the base-to-apex gradient; this plexus eventually reaches the outer half of the myocardium with a predominant location around branches of coronary arteries and veins. Based on multiple marker immunostaining, the molecular marker-phenotype of cardiac lymphatic endothelial cells can be characterized as: Prox-1 1 , Lyve-1 1 , VEGFR3 1 , Podoplanin 1 , VEGFR2 1 , CD144 1 , Tie2 1 , CD31 1 , vWF 2 , CD34 2 , CD133 2 . There are two major collecting vessels: one draining the right and left ventricles along the left conal vein and running upwards to the left side of the pulmonary trunk and further to the nearest lymph nodes (under the aortic arch and near the trachea), and the other one with its major branch running along the left cardiac vein and further on the surface of the coronary sinus and the left atrium to paratracheal lymph nodes. The extracardiac collectors gain the smooth muscle cell layer during late postnatal stages.
The role of the cardiac lymphatic system has been recently appreciated since lymphatic disturbances take part in various heart pathologies. This review presents the current knowledge about normal anatomy and structure of lymphatics and their prenatal development for a better understanding of the proper functioning of this system in relation to coronary circulation. Lymphatics of the heart consist of terminal capillaries of various diameters, capillary plexuses that drain continuously subendocardial, myocardial, and subepicardial areas, and draining (collecting) vessels that lead the lymph out of the heart. There are interspecies differences in the distribution of lymphatic capillaries, especially near the valves, as well as differences in the routes and number of draining vessels. In some species, subendocardial areas contain fewer lymphatic capillaries as compared to subepicardial parts of the heart. In all species there is at least one collector vessel draining lymph from the subepicardial plexuses and running along the anterior interventricular septum under the left auricle and further along the pulmonary trunk outside the heart and terminating in the right venous angle. The second collector assumes a different route in various species. In most mammalian species the collectors run along major branches of coronary arteries, have valves and a discontinuous layer of smooth muscle cells.
Co-operation of the endogenous and exogenous defense system maintains redox homeostasis and is essential for health. The endogenous defense system includes enzymatic (e.g. superoxide dismutase, catalase) and non-enzymatic, low molecular-weight scavengers (e.g. glutathione, ascorbic acid). Pathogenesis of many serious diseases (e.g. cancer, ischemic heart disease) includes oxidative stress which can disturb angiogenesis, the process of formation of new blood vessels sprouting from the existing one. Antioxidants, through reduction of oxidative stress and influence on neovascularization, may modulate progress and results of therapy in those diseases where such processes play an important role. Herein the impact of exogenous antioxidants on angiogenesis and factors modulating this process is presented. Most synthetic antioxidants whose activity has been described (namely N-acetylcysteine, pentoxifylline, synthetic analogue of curcumin, synthetic analogue of epigallocatechin-3 gallate [EGCG], tripertenoids) exert an inhibitory effect on neovascularization. A similar effect was also exhibited by several natural origin antioxidants (e.g. resveratrol, EGCG), which suggests that their application in therapy might normalize excessive angiogenesis. Some natural origin antioxidants e.g. purple coneflower and preparations consisting of natural antioxidants such as Padma 28 and Immunal forte increase a too low baseline level of angiogenesis and decreases a too high level. These preparations exert a regulatory effect on and may normalize neovascularization. They can be used in the case of diseases associated with too low or too high angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.