Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs.
The effect that monodisperse amorphous spherical silica particles of different sizes have on the viability of endothelial cells (EAHY926 cell line) is investigated. The results indicate that exposure to silica nanoparticles causes cytotoxic damage (as indicated by lactate dehydrogenase (LDH) release) and a decrease in cell survival (as determined by the tetrazolium reduction, MTT, assay) in the EAHY926 cell line in a dose-related manner. Concentrations leading to a 50% reduction in cell viability (TC(50)) for the smallest particles tested (14-, 15-, and 16-nm diameter) ranging from 33 to 47 microg cm(-2) of cell culture differ significantly from values assessed for the bigger nanoparticles: 89 and 254 microg cm(-2) (diameter of 19 and 60 nm, respectively). Two fine silica particles with diameters of 104 and 335 nm show very low cytotoxic response compared to nanometer-sized particles with TC(50) values of 1095 and 1087 microg cm(-2), respectively. The smaller particles also appear to affect the exposed cells faster with cell death (by necrosis) being observed within just a few hours. The surface area of the tested particles is an important parameter in determining the toxicity of monodisperse amorphous silica nanoparticles.
Because of their small size and large specific surface area (SA), insoluble nanoparticles are almost not affected by the gravitational force and are generally formulated in stable suspensions or sols. This raises, however, a potential difficulty in in vitro assay systems in which cells adhering to the bottom of a culture vessel may not be exposed to the majority of nanoparticles in suspension. J. G. Teeguarden et al., 2007, Toxicol. Sci. 95, 300-312 have recently addressed this issue theoretically, emphasizing the need to characterize the effective dose (mass or number or SA dose of particles that affect the cells) which, according to their model based on sedimentation and gravitation forces, might only represent a very small fraction of the nominal dose. We hypothesized, in contrast, that because of convection forces that usually develop in sols, the majority of the particles may reach the target cells and exert their potential toxicity. To address this issue, we exposed three different cell lines (A549 epithelial cells, EAHY926 endothelial cells, and J774 monocyte-macrophages) to a monodisperse suspension of Stöber silica nanoparticles (SNP) in three different laboratories. Four different end points (lacticodehydrogenase [LDH] release, LDH cell content, tetrazolium salt (MTT), and crystal violet staining) were used to assess the cell response to nanoparticles. We found, in all cell lines and for all end points, that the cellular response was determined by the total mass/number/SA of particles as well as their concentration. Practically, for a given volume of dispersion, both parameters are of course intimately interdependent. We conclude that the nominal dose remains the most appropriate metric for in vitro toxicity testing of insoluble SNP dispersed in aqueous medium. This observation has important bearings on the experimental design and the interpretation of in vitro toxicological studies with nanoparticles.
For the investigation of the interaction of nanoparticles with biomolecules, cells, organs, and animal models there is a need for well-characterized nanoparticle suspensions. In this paper we report the preparation of monodisperse dense amorphous silica nanoparticles (SNP) suspended in physiological media that are sterile and sufficiently stable against aggregation. SNP sols with various particle sizes (2-335 nm) were prepared via base-catalyzed hydrolysis and polymerization of tetraethyl orthosilicate under sterile conditions using either ammonia (Stober process (1) ) or lysine catalyst (Lys-Sil process (2) ). The series was complemented with commercial silica sols (Ludox). Silica nanoparticle suspensions were purified by dialysis and dispersed without using any dispersing agent into cell culture media (Dulbecco's Modified Eagle's medium) containing antibiotics. Particle sizes were determined by dynamic light scattering. SNP morphology, surface area, and porosity were characterized using electron microscopy and nitrogen adsorption. The SNP sols in cell culture medium were stable for several days. The catalytic activity of the SNP in the conversion of hydrogen peroxide into hydroxyl radicals was investigated using electron paramagnetic resonance. The catalytic activity per square meter of exposed silica surface area was found to be independent of particle size and preparation method. Using this unique series of nanoparticle suspensions, the relationship between cytotoxicity and particle size was investigated using human endothelial and mouse monocyte-macrophage cells. The cytotoxicity of the SNP was strongly dependent on particle size and cell type. This unique methodology and the collection of well-characterized SNP will be useful for further in vitro studies exploring the physicochemical determinants of nanoparticle toxicity.
Identifying the physico-chemical characteristics of nanoparticles (NPs) that drive their toxic activity is the key to conducting hazard assessment and guiding the design of safer nanomaterials. Here we used a set of 17 stable suspensions of monodisperse amorphous silica nanoparticles (SNPs) with selected variations in size (diameter, 2-335 nm), surface area (BET, 16-422 m(2)/g) and microporosity (micropore volume, 0-71 microl/g) to assess with multiple regression analysis the physico-chemical determinants of the cytotoxic activity in four different cell types (J774 macrophages, EAHY926 endothelial cells, 3T3 fibroblasts and human erythrocytes). We found that the response to these SNPs is governed by different physico-chemical parameters which vary with cell type: In J774 macrophages, the cytotoxic activity (WST1 assay) increased with external surface area (alphas method) and decreased with micropore volume (r(2) of the model, 0.797); in EAHY926 and 3T3 cells, the cytotoxic activity of the SNPs (MTT and WST1 assay, respectively) increased with surface roughness and small diameter (r(2), 0.740 and 0.872, respectively); in erythrocytes, the hemolytic activity increased with the diameter of the SNP (r(2), 0.860). We conclude that it is possible to predict with good accuracy the in vitro cytotoxic potential of SNPs on the basis of their physico-chemical characteristics. These determinants are, however, complex and vary with cell type, reflecting the pleiotropic interactions of nanoparticles with biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.