The late region of human neurotropic JC virus encodes a small 71-amino-acid agnoprotein that is also found in the polyomaviruses simian virus 40 and BK virus. Several functions of agnoprotein have been identified, including roles in regulating viral transcription and virion maturation. Earlier studies showed that agnoprotein expressed alone induced p21/WAF-1 expression and caused cells to accumulate in the G 2 /M stage of the cell cycle. Here we report that agnoprotein expression sensitized cells to the cytotoxic effects of the DNAdamaging agent cisplatin. Agnoprotein reduced the viability of cisplatin-treated cells and increased chromosome fragmentation and micronucleus formation. Whereas cisplatin-treated control cells accumulated in S phase, cells expressing agnoprotein did not, instead becoming aneuploid. Agnoprotein expression correlated with impaired double-strand-break repair activity in cellular extracts and reduced expression of the Ku70 and Ku80 DNA repair proteins. After agnoprotein expression, much of the Ku70 protein was located in the perinuclear space, where agnoprotein was also found. Results from binding studies showed an interaction of agnoprotein with Ku70 which was mediated by the N terminus. The ability of agnoprotein to inhibit doublestrand break repair activity when it was added to cellular extracts was also mediated by the N terminus. We conclude that agnoprotein inhibits DNA repair after DNA damage and interferes with DNA damage-induced cell cycle regulation. Since Ku70 is a subunit of the DNA-dependent protein kinase that is responsible both for double-strand break repair and for signaling damage-induced cell cycle arrest, the modulation of Ku70 and/or Ku80 by agnoprotein may represent an important event in the polyomavirus life cycle and in cell transformation.
Purpose HPV is involved in the development of some head and neck squamous-cell carcinomas (HNSCC). It was suggested that only transcriptionally active virus can induce carcinogenesis, therefore, the aim of our study was to analyze the frequency of active HPV infection, virus type, and its prognostic role in HNSCC patients. Methods Status of active HPV infection was assessed for 155 HNSCC patients based on p16 expression and HPV DNA presence. Univariate and multivariate analyses with Cox proportional regression model were performed to select independent prognostic factors. Results Active HPV infection was detected in 20.65% of patients. We identified 16.0, 40.9 and 1.7% of HPV positive oral cavity, oropharyngeal, and laryngeal cancer cases, respectively. HPV16 was dominant (81.25%) followed by HPV35 (9.38%) and double infections with HPV16 and 35 (6.25%) or HPV35 and 18 (3.12%). Patients with active HPV infection demonstrated significantly higher survival than HPV negative ones (OS 80.89% vs. 37.08%, p = 0.000; DFS 93.0% vs. 53.35%, p = 0.000, respectively). Longer OS and DFS were maintained for infected patients when oropharyngeal and non-oropharyngeal cases were analyzed separately. Interestingly, all patients infected with other than HPV16 types survived 5 years without cancer progression. In the analyzed group of 155 patients the strongest independent favourable prognostic factor for both OS and DFS was HPV presence. Conclusions High prevalence of HPV-driven HNSCC (mostly within oropharynx) was detected, with HPV16 type the most frequent, followed by HPV35 and HPV18. The presence of active HPV infection improved survival of both oropharyngeal and non-oropharyngeal cancer patients and should be taken into account in treatment planning.
Tat is an early regulatory protein of human immunodeficiency virus type 1, which plays a central role in the pathogenesis of AIDS by stimulating transcription of the viral genome and impairing several important cellular pathways during the progression of the disease. Here, we investigated the effect of Tat on cell response to DNA damage. Our results indicate that Tat production causes a noticeable increase in the survival rate of PC12 cells upon their treatment with genotoxic agents. Single-cell gel electrophoresis studies revealed reduced DNA breakage in PC12-Tat cells upon cisplatin treatment relative to the control cells. Furthermore, cytogenetic data exhibited less chromosomal damage in Tat-producing cells after recovery from cisplatin treatment, corroborating electrophoretic data. Examination of several proteins involved in the control of DNA repair showed elevated levels of Rad51, a key regulator of homologous recombination in cells expressing Tat. On the other hand, the level of Ku70, one of the components of the nonhomologous end-joining repair pathway, was slightly decreased in cells expressing Tat. Using a fluorescence-based assay, we demonstrated that repair of DNA double-strand breaks via homologous recombination is increased in Tat-producing cells. The results from in vitro nonhomologous end-joining assay revealed a reduced ability of protein extract from PC12-Tat cells compared to PC12 cells in rejoining linearized DNA. These observations ascribe a new role for Tat in host genomic integrity, perhaps by affecting the expression of genes involved in DNA repair.
The aim of the present study was to examine, using the micronucleus (MN) assay, the low-dose radiation response of normal skin cells from cancer patients and to determine whether the hyper-radiosensitivity (HRS)-like phenomenon occurs in cells of these patients. Primary skin fibroblasts and keratinocytes derived from 40 patients with cervix cancer were studied. After in vitro gamma irradiation with single doses ranging from 0.05 to 4 Gy, MN induction was assessed. For each patient, the linear-quadratic (LQ) model and the induced repair (IR) model were fitted over the whole data set. In fits of the IR model, an HRS-like response after low doses (seen as the deviation over the LQ curve) was demonstrated for the fibroblasts of two patients and for the keratinocytes of four other patients. The alpha(s)/alpha(r) ratio for the six patients ranged from 2.7 to 15.4, whereas the values of the parameter d(c) ranged from 0.13 to 0.36 Gy. No relationship was observed between chromosomal radiosensitivity of fibroblasts and keratinocytes derived from the same donor in the low-dose (0.1-0.25 Gy) region. In conclusion, the fact that low-dose chromosomal hypersensitivity was observed for cells of only six of the patients studied suggests that it is not a common finding in human normal cells and can represent an individual characteristic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.