In this paper we present LiFR, a lightweight DL reasoner capable of performing in resource-constrained devices, that implements a fuzzy extension of Description Logic Programs. Preliminary evaluation against two existing fuzzy DL reasoners and within a real-world use case has shown promising results.
This paper presents the NAct (Nutrition & Activity) Ontology, designed to drive personalised nutritional and physical activity recommendations and effectively support healthy living, through a reasoning-based AI decision support system. NAct coalesces nutritional, medical, behavioural and lifestyle indicators with potential dietary and physical activity directives. The paper presents the first version of the ontology, including its co-design and engineering methodology, along with usage examples in supporting healthy nutritional and physical activity choices. Lastly, the plan for future improvements and extensions is discussed.
AI-based software applications for personalized nutrition have recently gained increasing attention to help users follow a healthy lifestyle. In this paper, we present a knowledge-based recommendation framework that exploits an explicit dataset of expert-validated meals to offer highly accurate diet plans spanning across ten user groups of both healthy subjects and participants with health conditions. The proposed advisor is built on a novel architecture that includes (a) a qualitative layer for verifying ingredient appropriateness, and (b) a quantitative layer for synthesizing meal plans. The first layer is implemented as an expert system for fuzzy inference relying on an ontology of rules acquired by experts in Nutrition, while the second layer as an optimization method for generating daily meal plans based on target nutrient values and ranges. The system’s effectiveness is evaluated through extensive experiments for establishing meal and meal plan appropriateness, meal variety, as well as system capacity for recommending meal plans. Evaluations involved synthetic data, including the generation of 3000 virtual user profiles and their weekly meal plans. Results reveal a high precision and recall for recommending appropriate ingredients in most user categories, while the meal plan generator achieved a total recommendation accuracy of 92% for all nutrient recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.