We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.
We consider the bilevel minimum spanning tree (BMST) problem where the leader and the follower choose a spanning tree together, according to different objective functions. We show that this problem is NP-hard, even in the special case where the follower only controls a matching. Moreover, we give some evidence that BMST might even remain hard in case the follower controls only few edges. On the positive side, we present a (|V| − 1)-approximation algorithm for BMST, where |V| is the number of vertices. Moreover, we show that 2-approximating BMST is fixed-parameter tractable and that, in case of uniform costs on leader's edges, even solving BMST exactly is fixed-parameter tractable. We finally consider bottleneck variants of BMST and settle the complexity landscape of all combinations of sum or bottleneck objective functions for the leader and follower, for the optimistic as well as the pessimistic setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.