) mice, we analyzed the role of MK2/3 in cross-striated muscle by transcriptome and proteome analyses and by histology. We demonstrated enhanced expression of the slow oxidative skeletal muscle myofiber gene program, including the peroxisome proliferator-activated receptor gamma (PPAR␥) coactivator 1␣ (PGC-1␣). Using reporter gene and electrophoretic gel mobility shift assays, we demonstrated that MK2 catalytic activity directly regulated the promoters of the fast fiber-specific myosin heavy-chain IId/x and the slow fiber-specific sarco/endoplasmic reticulum Ca 2؉ -ATPase 2 (SERCA2) gene. Elevated SERCA2a gene expression caused by a decreased ratio of transcription factor Egr-1 to Sp1 was associated with accelerated relaxation and enhanced contractility in MK2/3 ؊/؊ cardiomyocytes, concomitant with improved force parameters in MK2/3 ؊/؊ soleus muscle. These results link MK2/3 to the regulation of calcium dynamics and identify enzymatic activity of MK2/3 as a critical factor for modulating cross-striated muscle function by generating a unique muscle phenotype exhibiting both reduced fatigability and enhanced force in MK2/3 ؊/؊ mice. Hence, the p38-MK2/3 axis may represent a novel target for the design of therapeutic strategies for diseases related to fiber type changes or impaired SERCA2 function.
The nuclear factor of activated T-cells (NFAT) c1 has been shown to be essential for Ca2+-dependent upregulation of myosin heavy chain (MyHC) I/β expression during skeletal muscle fiber type transformation. Here, we report activation of extracellular signal-regulated kinase (ERK) 1/2 in Ca2+-ionophore-treated C2C12 myotubes and electrostimulated soleus muscle. Activated ERK1/2 enhanced NFATc1-dependent upregulation of a −2.4 kb MyHCI/β promoter construct without affecting subcellular localization of endogenous NFATc1. Instead, ERK1/2-augmented phosphorylation of transcriptional coactivator p300, promoted its recruitment to NFATc1 and increased NFATc1–DNA binding to a NFAT site of the MyHCI/β promoter. In line, inhibition of ERK1/2 signaling abolished the effects of p300. Comparison between wild-type p300 and an acetyltransferase-deficient mutant (p300DY) indicated increased NFATc1–DNA binding as a consequence of p300-mediated acetylation of NFATc1. Activation of the MyHCI/β promoter by p300 depends on two conserved acetylation sites in NFATc1, which affect DNA binding and transcriptional stimulation. NFATc1 acetylation occurred in Ca2+-ionophore treated C2C12 myotubes or electrostimulated soleus. Finally, endogenous MyHCI/β gene expression in C2C12 myotubes was strongly inhibited by p300DY and a mutant deficient in ERK phosphorylation sites. In conclusion, ERK1/2-mediated phosphorylation of p300 is crucial for enhancing NFATc1 transactivation function by acetylation, which is essential for Ca2+-induced MyHCI/β expression.
Extracellular microRNAs (miRs) have been proposed as important blood‐based biomarkers for several diseases. Contrary to proteins and other RNA classes, miRs are stable and easily detectable in body fluids. In this respect, miRs represent a perfect candidate for minimal invasive biomarkers which can hopefully become a complement for invasive histological examinations of tumor tissue. Despite the high number of miR biomarker studies, the specificity and reproducibility of these studies is missing. Therefore, the standardization of pre‐analytical and analytical methods is urgently needed. Here, we validated miR analysis for RNA isolation and miR quantification by quantitative polymerase chain reaction (RT‐qPCR) based on good laboratory practice (GLP). Validation was carried out exemplarily on four miRs, which had already been described as potential biomarkers in previous studies. As basis for RNA analysis using RT‐qPCR, the Minimum Information for Publication of Quantitative Real‐Time PCR Experiments were applied and adapted on the analysis of circulating miRs from human plasma. In our study, we identified and solved several pitfalls from handling to normalization strategy in the analysis of extracellular miRs that lead to inconsistent and non‐repeatable data. Principles of GLP set a framework of experimental design, performance and monitoring to ensure high quality and reliable data. Within this study, we appointed first acceptance criteria for circulating miR quantification during validation which set standards for future miR quantification in blood samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.