ObjectiveProspective evaluation of intestinal ultrasound (IUS) for disease monitoring of patients with ulcerative colitis (UC) in routine medical practice.DesignTRansabdominal Ultrasonography of the bowel in Subjects with IBD To monitor disease activity with UC (TRUST&UC) was a prospective, observational study at 42 German inflammatory bowel disease-specialised centres representing different care levels. Patients with a diagnosis of a proctosigmoiditis, left-sided colitis or pancolitis currently in clinical relapse (defined as Short Clinical Colitis Activity Index ≥5) were enrolled consecutively. Disease activity and vascularisation within the affected bowel wall areas were assessed by duplex/Colour Doppler ultrasonography.ResultsAt baseline, 88.5% (n=224) of the patients had an increased bowel wall thickness (BWT) in the descending or sigmoid colon. Even within the first 2 weeks of the study, the percentage of patients with an increased BWT in the sigmoid or descending colon decreased significantly (sigmoid colon 89.3%–38.6%; descending colon 83.0%–42.9%; p<0.001 each) and remained low at week 6 and 12 (sigmoid colon 35.4% and 32.0%; descending colon 43.4% and 37.6%; p<0.001 each). Normalisation of BWT and clinical response after 12 weeks of treatment showed a high correlation (90.5% of patients with normalised BWT had symptomatic response vs 9.5% without symptomatic response; p<0.001).ConclusionsIUS may be preferred in general practice in a point-of-care setting for monitoring the disease course and for assessing short-term treatment response. Our findings give rise to the assumption that monitoring BWT alone has the potential to predict the therapeutic response, which has to be verified in future studies.
The levels of blood gases and energy metabolites strongly influence the outcome of animal experiments, for example in experimental stroke research. While mice have become prominent animal models for cerebral ischemia, little information is available on the effects of anesthetic drugs on blood parameters such as blood gases, glucose and lactate in this species. In this work, we collected arterial and venous blood samples from female CD-1 mice before and after cerebral ischemia induced by middle cerebral artery occlusion (MCAO), and we tested the influence of different anesthetic drugs. We found that all of the injectable anesthetics tested (ketamine/xylazine, chloral hydrate, propofol and pentobarbital) caused a decrease in blood pH and partial pressure of oxygen (pO2) and an increase of partial pressure of carbon dioxide (pCO2), indicating respiratory depression. This was not observed with inhalable anesthetics such as isoflurane, sevoflurane and halothane. Significant and up to two-fold increases of blood glucose concentration were observed under isoflurane, halothane, ketamine/xylazine, chloral hydrate, and propofol anesthesia. Lactate concentration rose significantly by 2-3-fold during inhalation of isoflurane and halothane treatment, but decreased by more than 50% after administration of pentobarbital. Permanent cerebral ischemia induced respiratory acidosis (low pH and pO2, high pCO2) which was most prominent after 24 h. Postsurgical treatment with Ringer-lactate solution (1 mL, intraperitoneal) caused a recovery of blood gases to basal levels after 24 h. Use of isoflurane for surgery caused a minor increase of blood glucose concentrations after one hour, but a strong increase of blood lactate. In contrast, anesthesia with pentobarbital did not affect glucose concentration but strongly reduced blood lactate concentrations one hour after surgery. All values recovered at three hours after MCAO. In conclusion, anesthetic drugs have a strong influence on murine blood parameters, which should be taken into account in experiments in mice.
-Purpose -Ginkgo extract EGb761 has shown anti-edema and anti-ischemic effects in various experimental models. In the present study, we demonstrate neuroprotective effects of EGb761 in experimental stroke while monitoring brain metabolism by microdialysis. Methods -We have used oxygenglucose deprivation in brain slices in vitro and middle cerebral artery occlusion (MCAO) in vivo to induce ischemia in mouse brain. We used microdialysis in mouse striatum to monitor extracellular concentrations of glucose and glutamate. Results -In vitro, EGb761 reduced ischemia-induced cell swelling in hippocampal slices by 60%. In vivo, administration of EGb761 (300 mg/kg) reduced cell degeneration and edema formation after MCAO by 35-50%. Immediately following MCAO, striatal glucose levels dropped to 25% of controls, and this reduction was not significantly affected by EGb761. Striatal glutamate levels, in contrast, increased 15-fold after MCAO; after pretreatment with EGb761, glutamate levels only increased by 4-5fold. Conclusions -We show that pretreatment with EGb761 strongly reduces cellular edema formation and neurodegeneration under conditions of ischemia. The mechanism of action seems to be related to a reduction of excitotoxicity, because ischemia-induced release of glutamate was strongly suppressed. Ginkgo extracts such as EGb761 may be valuable to prevent ischemia-induced damage in stroke-prone patients.
Neuroprotective properties of bilobalide, a specific constituent of Ginkgo extracts, were tested in a mouse model of stroke. After 24 hours of middle cerebral artery occlusion (MCAO), bilobalide reduced infarct areas in the core region (striatum) by 40-50% when given at 10 mg/kg one hour prior to MCAO. Neuroprotection was also observed at lower doses, or when the drug was given 1 h past stroke induction. Sensorimotor function in mice was improved by bilobalide as shown by corner and chimney tests. When brain metabolism in situ was monitored by microdialysis, MCAO caused a rapid disappearance of extracellular glucose in the striatum which returned to baseline levels after reperfusion. Extracellular levels of glutamate were increased by more than ten-fold in striatal tissue, and by four- to fivefold in hippocampal tissue (penumbra). Bilobalide did not affect glucose levels but strongly attenuated glutamate release in both core and penumbra regions. Bilobalide was equally active when given locally via the microdialysis probe and also reduced ischemia-induced glutamate release in vitro in brain slices. We conclude that bilobalide is a strong neuroprotectant in vivo at doses that can be used therapeutically in humans. The mechanism of action evidently involves reduction of glutamate release, thereby reducing excitotoxicity.
ABSTRACT. Purpose. Bilobalide is an active constituent of Ginkgo biloba and has shown neuroprotective effects in mice with cerebral ischemia. In the present study, we investigated brain permeability of bilobalide (i) in healthy mice and (ii) in mice before or after stroke. Methods. We have used in vivo microdialysis and LC-MS to estimate extracellular levels of bilobalide. 10 mg/kg of bilobalide was given by i.p. injection to control mice, and 60 minutes before and after middle cerebral artery occlusion (MCAO). Results. Bilobalide was already detectable in brain striatal microdialysates 10 min after i.p. administration and reached maximum levels (19 ng/mL, corresponding to 0.92 µM) after 40 min. Maximum plasma bilobalide levels were 5.9 µM. After an ischemic insult, the drug could be dialysed with similar efficiency as in control mice indicating slow elimination from the ischemic brain. When the drug was given after MCAO, availability in the brain was low, but measurable, at approx. 10% of control values. Conclusions. Our data demonstrate that bilobalide easily crosses the blood brain barrier and reaches extracellular concentrations in the brain that allow efficient interaction with target molecules such as neurotransmitter receptors. Availability of the drug in ischemic tissue is high when given before ischemia, but severely limited after MCAO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.