Asia is the major contributor to global aquaculture production in quantity, accounting for almost 90%. These practices lead to extensive land-use and land-cover changes in coastal areas, and thus harm valuable and sensitive coastal ecosystems. Remote sensing and GIS technologies contribute to the mapping and monitoring of changes in aquaculture, providing essential information for coastal management applications. This study aims to investigate aquaculture expansion and spatio-temporal dynamics in two Chinese river deltas over three decades: the Yellow River Delta (YRD) and the Pearl River Delta (PRD). Long-term patterns of aquaculture change are extracted based on combining a reference layer on existing aquaculture ponds for 2015 derived from Sentinel-1 data with annual information on water bodies extracted from the long-term Landsat archive. Furthermore, the suitability of the proposed approach to be applied on a global scale is tested based on exploiting the Global Surface Water (GSW) dataset. We found enormous increases in aquaculture area for the investigated target deltas: an 18.6-fold increase for the YRD (1984–2016), and a 4.1-fold increase for the PRD (1990–2016). Furthermore, we detect hotspots of aquaculture expansion based on linear regression analyses for the deltas, indicating that hotspots are located in coastal regions for the YRD and along the Pearl River in the PRD. A comparison with high-resolution Google Earth data demonstrates that the proposed approach can detect spatio-temporal changes of aquaculture at an overall accuracy of 89%. The presented approach has the potential to be applied to larger spatial scales covering a time period of more than three decades. This is crucial to define appropriate management strategies to reduce the environmental impacts of aquaculture expansion, which are expected to increase in the future.
A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.