Oncoprotein c-myc is expressed in proliferating but not quiescent mammalian cells, and its overexpression or inappropriate expression is associated with malignant transformation. However, in spite of an intense interest, the normal function of this protein has remained elusive. As a step towards the elucidation of the function of c-myc protein, we studied its distribution within several types of cells, including HL 60, K 562, COLO 320, and CHEF/18 cells. In all of the cells studied, c-myc protein was detected in high molecular weight protein fractions, in 350-600 Kd range, in gel-exclusion chromatography and sucrose gradient centrifugation. This distribution of c-myc protein coincided with the distribution of DNA polymerase alpha and several other enzymes necessary for DNA replication. The data suggest that c-myc product may be a component of the replitase complex of enzymes involved in nuclear DNA replication.
The effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on DNA fragmentation, altered expression of the heat shock protein (hsp) 70 gene, and protooncogenes c-myc and c-myb was studied during chemical induction of erythroid differentiation in K562 cells. Preincubation of K562 cells with 1,25(OH)2D3 did not alter the concentration of hemoglobin in cells which did differentiate, but led to a reduction in the accumulation of low molecular weight DNA generated by Ara-C administration. The extent of this reduction was similar to the degree of inhibition of hemoglobin formation in the culture as the whole. Preincubation with 1,25(OH)2D3 had no effect on the increase of hsp 70 gene expression induced by a 48-hr treatment with Ara-C, but prevented the Ara-C-induced down-regulation of the protooncogene c-myc. The protooncogene c-myb was down-regulated after 15 min of treatment with Ara-C, and exposure to 1,25(OH)2D3 prior to Ara-C caused a further down-regulation of its expression. The data suggest that the events associated with erythroid differentiation may be separable into at least two groups; one of these may have an influence on the kinetics of the cell cycle traverse, and the other may be related to the expression of the erythroid phenotype.
Myeloid leukemia cells of human and murine origin can be induced to differentiate into more mature forms which lose their neoplastic properties. The hormonal form of vitamin D is a powerful inducer of monocytic differentiation, but its therapeutic use is limited by hypercalcemia. It was recently reported that a novel derivative of vitamin D, 1,25-dihydroxy-16-ene-23-yne-vitamin D3, is an exceptionally potent inducer of monocytic differentiation, and prolongs survival of mice bearing leukemia cells. We now show that this compound is also a most potent inhibitor of erythrodifferentiation. This finding has important implications for the control of hematopoiesis.
The physiologically active form of vitamin D, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3], was found to inhibit erythroid differentiation of human leukemic K562 cells. Differentiation was induced by 1 mumol/L arabinocytosine (Ara-C), 40 mumol/L tiazofurin, 1 mumol/L aphidicolin, or 1 mumol/L hydroxyurea, and was monitored daily by the appearance of hemoglobin in an increasing proportion of cells. Pretreatment for 48 hours with 2.4 x 10(-8) mol/L 1,25(OH)2D3, a concentration that is also optimal for induction of monocytic differentiation of HL-60 cells, reproducibly inhibited subsequent induction of erythroid differentiation by all of the above inducers, and modified the morphologic changes that Ara-C produced in these cells. The inhibition of hemoglobinization was approximately 50% irrespective of the degree of differentiation produced by the various inducers, but growth inhibition associated with exposure to the inducers was not affected by 1,25(OH)2D3. Similar inhibition of differentiation by 1,25(OH)2D3 was observed in mouse erythroleukemia cells MEL-D1B treated with 5 mmol/L hexamethylenebisacetamide. The inhibitory effect of 1,25(OH)2D3 on erythroid differentiation of K562 cells was abrogated by cyclohexamide (20 micrograms/mL), an inhibitor of protein synthesis. The mRNA for 1,25(OH)2D3 receptor (VDR) was detected in K562 cells, and was downregulated by a 96-hour exposure to 1,25(OH)2D3 or a 48-hour exposure to Ara-C. The presence of VDR mRNA suggests a physiologic role for 1,25(OH)2D3 in K562 cells that are precursors of erythroid cells. This role is perhaps to shift the pathways of differentiation from the erythroid to the monocytic lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.