Abstract-Exposure of the neonatal lung to chronic hypoxia produces significant pulmonary vascular remodeling, right ventricular hypertrophy, and decreased lung alveolarization. Given recent data suggesting that stem cells could contribute to pulmonary vascular remodeling and right ventricular hypertrophy, we tested the hypothesis that blockade of SDF-1 (stromal cell-derived factor 1), a key stem cell mobilizer or its receptor, CXCR4 (CXC chemokine receptor 4), would attenuate and reverse hypoxia-induced cardiopulmonary remodeling in newborn mice. Neonatal mice exposed to normoxia or hypoxia were randomly assigned to receive daily intraperitoneal injections of normal saline, AMD3100, or anti-SDF-1 antibody from postnatal day 1 to 7 (preventive strategy) or postnatal day 7 to 14 (therapeutic strategy). As compared to normal saline, inhibition of the SDF-1/CXCR4 axis significantly improved lung alveolarization and decreased pulmonary hypertension, right ventricular hypertrophy, vascular remodeling, vascular cell proliferation, and lung or right ventricular stem cell expressions to near baseline values. We therefore conclude that the SDF-1/CXCR4 axis both prevents and reverses hypoxia-induced cardiopulmonary remodeling in neonatal mice, by decreasing progenitor cell recruitment to the pulmonary vasculature, as well as by decreasing pulmonary vascular cell proliferation. These data offer novel insights into the role of the SDF-1/CXCR4 axis in the pathogenesis of neonatal hypoxia-induced cardiopulmonary remodeling and have important therapeutic implications. Key Words: pulmonary hypertension Ⅲ hypoxia Ⅲ progenitor cells Ⅲ SDF-1 Ⅲ vascular remodeling D espite marked improvements in medical care, approximately 2 in 1000 neonates are perinatally exposed to intermittent or chronic periods of hypoxia. 1 Unlike that of the adult, the neonatal pulmonary vascular response to chronic hypoxic exposure is much more rapid and severe 2 and results in failure of the fetal circulation to adapt to a response that supports postnatal life. This in turn contributes to the pathogenesis of persistent pulmonary hypertension (PH) of the newborn, chronic lung disease of prematurity, and congenital heart disease. It is typically characterized by profound proliferation of smooth muscle and adventitial cells in the pulmonary vasculature and abnormal extension of smooth muscle into peripheral arteries, along with impairment in alveolar development in preterm neonates. 3,4 Although the mechanisms underlying neonatal hypoxiainduced cardiopulmonary remodeling remain unclear, recent studies have suggested that stem cells may contribute to systemic and pulmonary vascular remodeling. We therefore sought to examine the role of a key stem cell mobilizer, the chemokine SDF-1 (stromal cell-derived factor 1) and its receptor CXCR4 (CXC chemokine receptor 4) in neonatal chronic hypoxia-induced cardiopulmonary remodeling.SDF-1 or CXCL12 is a chemokine that is secreted by several tissues following exposure to hypoxia, 5,6 in turn leading to the release of p...
These data suggest that acute effects of MSC therapy in HILI are mainly paracrine mediated; however, optimum long-term improvement following HILI requires treatment with the MSCs themselves or potentially repetitive administration of CM.
S. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 300: L330 -L340, 2011. First published January 14, 2011; doi:10.1152/ajplung.00270.2010.-The pathological hallmarks of bronchopulmonary dysplasia (BPD), one of the most common long-term pulmonary complications associated with preterm birth, include arrested alveolarization, abnormal vascular growth, and variable interstitial fibrosis. Severe BPD is often complicated by pulmonary hypertension characterized by excessive pulmonary vascular remodeling and right ventricular hypertrophy that significantly contributes to the mortality and morbidity of these infants. Connective tissue growth factor (CTGF) is a multifunctional protein that coordinates complex biological processes during tissue development and remodeling. We have previously shown that conditional overexpression of CTGF in airway epithelium under the control of the Clara cell secretory protein promoter results in BPD-like architecture in neonatal mice. In this study, we have generated a doxycycline-inducible double transgenic mouse model with overexpression of CTGF in alveolar type II epithelial (AT II) cells under the control of the surfactant protein C promoter. Overexpression of CTGF in neonatal mice caused dramatic macrophage and neutrophil infiltration in alveolar air spaces and perivascular regions. Overexpression of CTGF also significantly decreased alveolarization and vascular development. Furthermore, overexpression of CTGF induced pulmonary vascular remodeling and pulmonary hypertension. Most importantly, we have also demonstrated that these pathological changes are associated with activation of integrin-linked kinase (ILK)/glucose synthesis kinase-3 (GSK-3)/-catenin signaling. These data indicate that overexpression of CTGF in AT II cells results in lung pathology similar to those observed in infants with severe BPD and that ILK/GSK-3/-catenin signaling may play an important role in the pathogenesis of severe BPD.
Despite recent advances in neonatal intensive care and surfactant therapy, bronchopulmonary dysplasia (BPD) continues to be one of the most common long-term pulmonary complications associated with preterm birth. Clinical efforts to prevent and treat BPD have been largely unsuccessful due to its multifactorial nature and poorly understood disease process. Connective tissue growth factor (CTGF) is a matricellular protein that plays an important role in tissue development and remodeling. Previous studies have demonstrated that hyperoxia exposure up-regulates CTGF expression in neonatal rat lungs. Whether CTGF overexpression plays a role in the pathogenesis of BPD, and whether CTGF antagonism has a therapeutic potential for BPD, are unknown. In the present study, we examined CTGF expression in lung autopsy specimens from patients with BPD and control subjects with no BPD. We assessed the effect of a CTGF-neutralizing monoclonal antibody (CTGF Ab) on preventing hyperoxia-induced lung injury in neonatal rats. Our study demonstrates that CTGF expression is increased in BPD lungs. In newborn rats, exposure to 90% oxygen for 14 days resulted in activation of β-catenin signaling, decreased alveolarization and vascular development, and physiological and histological evidence of pulmonary hypertension (PH). However, treatment with CTGF Ab prevented β-catenin signaling activation, improved alveolarization and vascular development, and attenuated PH during hyperoxia. These data indicate that CTGF-β-catenin signaling plays a critical role in the pathogenesis of experimental BPD. CTGF antagonism may offer a novel therapeutic strategy to alleviate BPD and PH in neonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.