Progressive obesity and its associated metabolic syndromes represent a globally growing challenge, yet mechanistic understanding and current therapeutics are unsatisfactory. We discovered that CD4+ T-lymphocytes, resident in visceral adipose tissue (VAT), control insulin-resistance in diet-induced obese (DIO) mice and likely humans. DIO VAT-associated T cells display biased TCR-Vα repertoires suggesting antigen-specific expansion. CD4+ T-lymphocyte control of glucose homeostasis is compromised in DIO when VAT accumulates pathogenic IFNγ-secreting Th1 cells, overwhelming static numbers of Th2 (CD4+GATA-3+) and regulatory Foxp3+ T cells. CD4+ T cell transfer into DIO, lymphocyte-free RAGnull mice reversed weight gain and insulin resistance predominately through Th2 cells. Brief systemic treatment with αCD3 antibody or its F(ab′)2 fragment, restores the Th1/Foxp3+ balance and reverses insulin resistance for months, despite continuing high-fat diet. The progression of obesity-associated metabolic abnormalities is physiologically under CD4+ T cell control, with expansion of adipose tissue-resident T cells that can be manipulated by immunotherapy.
SummarySalmonella invade host cells using Type 3 secreted effectors, which modulate host cellular targets to promote actin rearrangements at the cell surface that drive bacterial uptake. The Arp2/3 complex contributes to Salmonella invasion but is not essential, indicating other actin regulatory factors are involved. Here, we show a novel role for FHOD1, a formin family member, in Salmonella invasion. FHOD1 and Arp2/3 occupy distinct microdomains at the invasion site and control distinct aspects of membrane protrusion formation. FHOD1 is phosphorylated during infection and this modification is required for promoting bacterial uptake by host cells. ROCK II, but not ROCK I, is recruited to the invasion site and is required for FHOD1 phosphorylation and for Salmonella invasion. Together, our studies reveal an important phospho-dependent FHOD1 actin polymerization pathway in Salmonella invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.