Despite excellent short-term results, long-term survival of transplanted kidneys has not improved accordingly. Although alloimmune responses and calcineurin inhibitor-related nephrotoxicity have been identified as main drivers of fibrosis, no effective treatment options have emerged. In this perspective, mesenchymal stromal cells (MSCs) are an interesting candidate because of their immunosuppressive and regenerative properties. Of importance, no other clinical studies have investigated their effects in allograft rejection and fibrosis. We performed a safety and feasibility study in kidney allograft recipients to whom two intravenous infusions (1 million cells per kilogram) of autologous bone marrow (BM) MSCs were given, when a protocol renal biopsy at 4 weeks or 6 months showed signs of rejection and/or an increase in interstitial fibrosis/tubular atrophy (IF/TA). Six patients received MSC infusions. Clinical and immune monitoring was performed up to 24 weeks after MSC infusions. MSCs fulfilled the release criteria, infusions were well-tolerated, and no treatment-related serious adverse events were reported. In two recipients with allograft rejection, we had a clinical indication to perform surveillance biopsies and are able to report on the potential effects of MSCs in rejection. Although maintenance immunosuppression remained unaltered, there was a resolution of tubulitis without IF/TA in both patients. Additionally, three patients developed an opportunistic viral infection, and five of the six patients displayed a donor-specific downregulation of the peripheral blood mononuclear cell proliferation assay, not reported in patients without MSC treatment. Autologous BM MSC treatment in transplant recipients with subclinical rejection and IF/TA is clinically feasible and safe, and the findings are suggestive of systemic immunosuppression.
Background Despite growing waiting lists for renal transplants, hesitations persist with regard to the use of deceased after cardiac death (DCD) renal grafts. We evaluated the outcomes of DCD donations in The Netherlands, the country with the highest proportion of DCD procedures (42.9%) to test whether these hesitations are justified. Methods This study included all procedures with grafts donated after brain death (DBD) (n = 3611) and cardiac death (n = 2711) performed between 2000 and 2017. Transplant outcomes were compared by Kaplan Meier and Cox regression analysis, and factors associated with short (within 90 days of transplantation) and long-term graft loss evaluated in multi-variable analyses. Findings Despite higher incidences of early graft loss (+ 50%) and delayed graft function (+ 250%) in DCD grafts, 10-year graft and recipient survival were similar for the two graft types (Combined 10-year graft survival: 73.9% (95% CI: 72.5–75.2), combined recipient survival: 64.5% (95 CI: 63.0–66.0%)). Long-term outcome equivalence was explained by a reduced impact of delayed graft function on DCD graft survival (RR: 0.69 (95% CI: 0.55–0.87), p < 0.001). Mid and long-term graft function (eGFR), and the impact of incident delayed graft function on eGFR were similar for DBD and DCD grafts. Interpretation Mid and long term outcomes for DCD grafts are equivalent to DBD kidneys. Poorer short term outcomes are offset by a lesser impact of delayed graft function on DCD graft survival. This nation-wide evaluation does not justify the reluctance to use of DCD renal grafts. A strong focus on short-term outcome neglects the superior recovery potential of DCD grafts.
Aims: Ischemia/reperfusion (I/R) injury is a common clinical problem. Although the pathophysiological mechanisms underlying I/R injury are unclear, oxidative damage is considered a key factor in the initiation of I/R injury. Findings from preclinical studies consistently show that quenching reactive oxygen and nitrogen species (RONS), thus limiting oxidative damage, alleviates I/R injury. Results from clinical intervention studies on the other hand are largely inconclusive. In this study, we systematically evaluated the release of established biomarkers of oxidative and nitrosative damage during planned I/R of the kidney and heart in a wide range of clinical conditions. Results: Sequential arteriovenous concentration differences allowed specific measurements over the reperfused organ in time. None of the biomarkers of oxidative and nitrosative damage (i.e., malondialdehyde, 15(S)-8-iso-prostaglandin F2a, nitrite, nitrate, and nitrotyrosine) were released upon reperfusion. Cumulative urinary measurements confirmed plasma findings. As of these negative findings, we tested for oxidative stress during I/R and found activation of the nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of oxidative stress signaling. Innovation: This comprehensive, clinical study evaluates the role of RONS in I/R injury in two different human organs (kidney and heart). Results show oxidative stress, but do not provide evidence for oxidative damage during early reperfusion, thereby challenging the prevailing paradigm on RONS-mediated I/R injury. Conclusion: Findings from this study suggest that the contribution of oxidative damage to human I/R may be less than commonly thought and propose a re-evaluation of the mechanism of I/R. Antioxid. Redox Signal. 19,[535][536][537][538][539][540][541][542][543][544][545]
Donor brain death has profound effects on posttransplantation graft function and survival. We hypothesized that changes initiated in the donor influence the graft's response to ischemia and reperfusion. In this study, human brain dead donor kidney grafts were compared to living and cardiac dead donor kidney grafts. Pretransplant biopsies of brain dead donor kidneys contained notably more infiltrating T lymphocytes and macrophages. To assess whether the different donor conditions result in a different response to reperfusion, local cytokine release from the reperfused kidney was studied by measurement of paired arterial and renal venous blood samples. Reperfusion of kidneys from brain dead donors was associated with the instantaneous release of inflammatory cytokines, such as G-CSF, IL-6, IL-9, IL-16 and MCP-1. In contrast, kidneys from living and cardiac dead donors showed a more modest cytokine response with release of IL-6 and small amounts of MCP-1. In conclusion, this study shows that donor brain death initiates an inflammatory state of the graft with T lymphocyte and macrophage infiltration and massive inflammatory cytokine release upon reperfusion. These observations suggest that brain dead donors require a novel approach for donor pretreatment aimed at preventing this inflammatory response to increase graft survival. Key words: Brain death, cytokines, inflammation, ischemia, kidney transplantation, reperfusionAbbreviations: HTK, histidine-tryptophan-ketoglutarate; LD, living donor; BDD, brain dead donor; CDD, cardiac dead donor; WIT, warm ischemia time; CIT, cold ischemia time; ICU, intensive care unit; UW, University of Wisconsin solution; LDH, lactate dehydrogenase; PMN, polymorphonuclear neutrophils; MPO, myeloperoxidase; bFGF, basic fibroblast growth factor; G-CSF, granulocyte colony stimulating factor; GM-GSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IP, interferon-inducible protein; MCP, monocyte chemoattractant protein; MIP, macrophage inflammatory protein; PDGF, plateletderived growth factor; TNF, tumor necrosis factor; DGF, delayed graft function; AUC, area under the curve; SEM, standard error of the mean.
This systematic study in human kidney transplantation shows an acute but nonsustained sC5b-9 release on reperfusion in deceased-donor kidney transplantation. This instantaneous, intravascular terminal complement activation may be induced by intravascular cellular debris and hypoxic or injured endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.