Supernova explosion and the associated neutron star natal kicks are important events on a pathway of a binary to become a gravitational wave source, an X-ray binary or a millisecond radio pulsar. Weak natal kicks often lead to binary survival, while strong kicks frequently disrupt the binary. In this article, we aim to further constrain neutron star natal kicks in binaries. We explore binary population synthesis models by varying prescription for natal kick, remnant mass and mass accretion efficiency. We introduce a robust statistical technique to analyse combined observations of different nature. Using this technique, we further test different models using parallax and proper motion measurements for young isolated radio pulsars and similar measurements for Galactic Be X-ray binaries. Our best model for natal kicks is consistent with both measurements and contains a fraction of w = 0.2 ± 0.1 weak natal kicks with $\sigma _1 = 45^{+25}_{-15}$ km s−1, the remaining natal kicks are drawn from the high-velocity component, same as in previous works: σ2 = 336 km s−1. We found that currently used models for natal kicks of neutron stars produced by electron capture supernova (combination of maxwellian σ = 265 km s−1 and σ = 30 km s−1 for electron capture) are inconsistent or marginally consistent with parallaxes and proper motions measured for isolated radio pulsars. We suggest a new model for natal kicks of ecSN, which satisfy both observations of isolated radio pulsars and Be X-ray binaries.
The large number of gravitational wave (GW) detections have revealed the properties of the merging black hole binary population, but their formation is still heavily debated. Understanding the imprint of stellar physics on the observable GW population will shed light on how we can use the gravitational wave data, along with other observations, to constrain the poorly understood evolution of massive binaries. We perform a parameter study for the classical isolated binary formation channel in order to better understand how sensitive the properties of the coalescing binary black hole population are on uncertainties related of stable mass transfer phase and stellar winds. We use the population synthesis code SeBa to simulate the evolution of massive binaries on a large range of metallicities. We vary five assumptions: 1 and 2) the mass transfer efficiency and the angular momentum loss during the first mass transfer phase, 3) the mass transfer stability criteria for giant donors with radiative envelopes, 4) the effective temperature at which an evolved star develops a deep convective envelope, and 5) the stellar winds. Our varied parameters have a complex, interrelated effects on the population properties of GW sources. Most notably, the impact of the mass transfer stability criteria parameter depends on the assumed mass transfer efficiency. The uncertainties in the assumed angular momentum loss have significant effects on the relative rates of the two dominant channels. Because of the numerous uncertainties and lack of reliable models direct inference of massive binary physics from gravitational data is not recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.