Nitrification was investigated in a model freshwater sediment by the combined use of microsensors and fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. In situ nitrification activity was restricted mainly to the upper 2 mm of the sediment and coincided with the maximum abundance of nitrifying bacteria, i.e. 1.5 x 107 cells cm-3 for ammonia-oxidizing Beta-proteobacteria (AOB) and 8.6 x 107 cells cm-3 for Nitrospira-like nitrite-oxidizing bacteria (NOB). Cell numbers of AOB decreased more rapidly with depth than numbers of NOB. For the first time, Nitrospira-like bacteria could be quantified and correlated with in situ nitrite oxidation rates in a sediment. Estimated cell-specific nitrite oxidation rates were 1.2-2.7 fmol NO2- cell-1 h-1.
Sediment-reworking macrofauna can stimulate nitrification by increasing the O(2) penetration into sediments or it can reduce nitrification by grazing on nitrifying bacteria. We investigated the influence of Chironomus riparius larvae (Insecta: Diptera) on the in situ activity, abundance, and distribution of NH4+-oxidizing (AOB) and NO2--oxidizing bacteria (NOB) in two freshwater sediments with microsensors and fluorescence in situ hybridization. In organic-poor sediment, nitrification activity was reduced by the presence of C. riparius larvae, whereas no such effect was detected in organic-rich sediment. We explain this difference with the variable larval burrowing and grazing behavior in the two sediment types: In organic-poor sediment larval activities were intense and evenly distributed across the whole sediment surface, whereas in organic-rich sediment larval activities were locally restricted to the microenvironment of animal burrows. Surprisingly, the animals did not cause any significant change of the abundance of AOB and NOB. This implies that the observed reduction of nitrification activity was not density-regulated, but rather was due to the lowered metabolic activity of the nitrifiers. Partial digestion and redeposition of particle-associated bacteria by C. riparius larvae are believed to have caused this loss of metabolic activity.
1. The impact of burrowing larvae of Ephoron virgo (Ephemeroptera, Polymitarcidae) on sediment microbiology has not been previously investigated because of difficulties in sampling the sediment of large rivers under in situ conditions. Therefore, we conducted experiments in the on-ship Ecological Rhine Station of the University of Cologne (Germany), in which ambient conditions of the River Rhine can be closely mimicked. 2. In two consecutive seasons, experimental flow channels were stocked with Ephoron larvae and continuously supplied with water taken directly from the River Rhine. Sediment from the immediate vicinity of Ephoron burrows (i.e. U-shaped cavities reaching 10-80 mm deep into the sediment) and bulk sediment samples were analysed for (i) particulate organic matter content, (ii) microscale in situ distribution of O 2 , NO À 3 , and NH þ 4 , and (iii) potential activities of exoenzymes. 3. Sediment surrounding the Ephoron burrows had markedly higher organic matter contents and exoenzyme activities compared with the bulk sediment. Microsensor measurements demonstrated that local O 2 and NO À 3 penetration into the sediment were greatly enhanced by larval ventilation behaviour. Volumetric O 2 and NO À 3 turnover rates that were calculated from steady state concentration profiles measured directly in the burrow lining were considerably higher than at the sediment surface. 4. In the sediment of the fast flowing River Rhine Ephoron burrows are preferential sites of organic matter accumulation and dissolved oxidant penetration. Our data suggest that the burrows are surrounded by a highly active microbial community that responds to the inputs from the water column with elevated O 2 and NO À 3 turnover, and release of exoenzymes into the sediment pore water. Especially during periods of mass occurrence, the larvae of E. virgo may thus significantly contribute (i) to the ecological connection between the water column and the sediment and (ii) to biogeochemical processing of organic matter in the riverbed.
Two freshwater sediments (organic-poor and organic-rich) that contained their distinct natural microbial communities were incubated in experimental microcosms with either NH(4) (+) or NO(2) (-) in the overlying water. Microsensor measurements revealed the thin oxic surface layer as a site of initially high rates of nitrification, i.e. O(2), NH(4) (+), and NO(2) (-) consumption, and NO(3) (-) production. Unexpectedly, during the subsequent 4-week incubation NH(4) (+) consumption decreased in both sediment types and NO(2) (-) consumption decreased in the organic-rich sediment. In the organic-rich sediment O(2) consumption and NO(3) (-) production paralleled these decreases, i.e. the reduced NH(4) (+) and NO(2) (-) consumption rates were most probably due to reduced activity of nitrifiers. These microsensor data imply factors other than frequently suggested competition between nitrifiers and heterotrophs for NH(4) (+), NO(2) (-) or O(2) as causes for the loss of nitrification activity. We hypothesize that experimental manipulations (e.g. removal of macrofauna, redistribution of particulate organic matter, permanent nutrient enrichment) rendered the performance of the microbial community unstable. It is thus recommendable to restrict experiments in such commonly used model systems to the period of highest stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.