With this contribution, we shed light on the relation between the discrete adjoints of multistep backward differentiation formula (BDF) methods and the solution of the adjoint differential equation. To this end, we develop a functional-analytic framework based on a constrained variational problem and introduce the notion of weak adjoint solutions. We devise a finite element Petrov-Galerkin interpretation of the BDF method together with its discrete adjoint scheme obtained by reverse internal numerical differentiation. We show how the finite element approximation of the weak adjoint is computed by the discrete adjoint scheme and prove its asymptotic convergence in the space of normalized functions of bounded variation. We also obtain asymptotic convergence of the discrete adjoints to the classical adjoints on the inner time interval. Finally, we give numerical results for non-adaptive and fully adaptive BDF schemes. The presented framework opens the way to carry over the existing theory on global error estimation techniques from finite element methods to BDF methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.